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ABSTRACT

The ability to reasonably predict the response of steel structures under fire effects is of great
importance in structural fire safety design. This paper presents neural networks prediction of axial
load capacity for steel columns in fire. An algorithm of back propagation neural network with the
log-sigmoid activation function is adopted because of its precision and results enhancement of
foretelling. The legitimacy of the technique is tried by contrasting and distributed test information
on steel columns at surrounding and elevated heat. The examinations demonstrate such technique
gives great correlation with test result. Parametric studies have been done to evaluate the impacts of
cross sectional shape, slenderness ratios and eccentricity of loading on the carrying capacity of steel
columns under fire. The slim sections of steel columns with slenderness ratio domain (100-140)
react distinctively by showing an abundantly decreased rate of loss in strength within the
temperature domain (20°C - 300°C). This domain diminishes further with expanding slenderness
ratios, and for middle columns with slenderness ratio domain (40-80), is like that of stumpy
columns however at decreased buckling stress. Be that as it may, in this scope of (L/R) ratios the
lessening in stress with expanding temperature is regular and demonstrates no sudden drop, because
of the collaboration amongst buckling and yielding. On other hand, the eccentricity of loading on
the carrying capacity of steel columns under fire shows that the slender column, (slenderness ratio)
greater than 120, the column demonstrates a diminishing impact of used eccentricity of loadings
with expanding slenderness ratios. This might be as a consequence of more impelled thermal
bowing that is straightforwardly relative to the column length. And the load-eccentricity
characteristics of the intermediate column, (slenderness ratio) domain (20 — 60), are schemed at
increasing temperature gradient. It is fascinating to observe that the eccentricity of the limit of
maximum column load capacity slightly effected with temperature gradient. It is trusted that the
important data gave in this work will be helpful in giving a superior comprehension on the genuine
behavior of steel sections in fire and a great step in improving the method of design.

Keywords: steel column, axial load, Fire, artificial neural network, slenderness ratio, Mat lab
software.
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1. INTRODUCTION

Research on the behavior of structures under fire conditions started in the late nineteenth century,
motivated by setbacks of structures on account of fundamental breakdown brought on by fires.
Starting now and into the foreseeable future, fire planning investigation has turned out to be
reliably. In the midst of the latest decades fire building diagram has become in a general sense, and
the execution of steel sections in fire hazardous conditions is one of the basic fields of moral and
experimental study.

Because of the high cost of full-scale fire tests and size difficulties of existing heaters, and in
addition to the impenetrability to fire test of a stack bearing segment is ordinarily limited these
studies rely. Therefore, there are no possible results of evaluating the test results truly.

The late efforts have been made to modernize the outline procedure utilizing moral neural systems
as they can gain from accessible tests amid preparing process .Artificial neural system is another
innovation rose up to simulating of human brain and has been effectively connected in various
fields of building. The results obtained from ANN analyses using the software, Mat lab are
generally in reasonable agreement with experimental results.

2. THE BEHAVIOUR OF STEEL COLUMNS IN FIRE

Fire can be critical to the structural safety of the building. When a fire occurs in a building, the
increase in temperature due to the fire can lead to a large reduction in strength and stiffness of the
structural members. It can also result in large thermally induced forces and deformations in
structural members. These effects can lead to collapse of buildings in fire. While there have been
significant advances in the understanding of structural response to fire in recent years, there are still
many aspects of structure-fire behavior that are not well understood and require further research.

In the case of a building fire elevated temperatures have two main effects on a steel structure: Steel
suffers a loss of strength and stiffness with increasing temperatures and the almost linear elastic,
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perfectly plastic stress-strain relationship of steel carbon material at surrounding temperature
becomes distinctly nonlinear.

Global and local buckling of a steel column is induced by large deformations due to applied load to
the element. The loss of stiffness and strength and the nonlinear stress strain relationship of carbon
steel at elevated temperatures results in a much lower resistance of the steel section than at ambient
temperature.

Experimental tests have given key data on structures under fire action and advances on
computational assets have prompted the improvement of numerical strategies fit for reproducing
their conduct. The work reported in this paper is intended to contribute to an improved perception
of the response of steel columns to fire by using Neural Network Modeling.

3. NEURAL NETWORK MODELING BACKGROUND

Artificial Neural Networks (ANN) are widely used to approximate complex systems that are
difficult to model using conventional modeling techniques such as mathematical modeling (Shahin
etal., 2001)* (Neural networks, 2004)7 | (Ashour et al., 2004)). They applied in several civil
engineering problems structural, geotechnical, management etc. ( Haytham ,2005)[!.

An ANN is a get together (system) of an extensive number of exceptionally associated preparing
units, the alleged hubs or neurons. The neurons are associated by unidirectional correspondence
channels (associations or connections). The quality of the associations between the neurons is
spoken to by numerical qualities which typically are called weights. Information is put away as a
gathering of weights. Every neuron has an initiation esteem that is a component of the whole of
inputs got from different hubs through the weighted connections (Ashour et al., 2004) ¥,
(Kirkegaard et al., 1993) 1]

Additionally ANN can be characterized as a type of counterfeit consciousness, which by method for
their engineering, endeavor to reenact the organic structure of the human brain and connected
neuron units system (Shahin et al. , 2001) 2, (Shahin, et al., 2002) [**1,

4. EXPERIMENTAL DATABASE

The experimental test information embraced in the present study relies on the database compiled by
Pauli et al. (2012) ! and Uppfeldt (2012) . A sub-database comprising of a sum of 62 columns
test was made out of the 118 experimental tests in the premier database; Table 1 summarizes the
properties of the selected sub-database. The accompanying criteria were utilized as a part of
creating the sub-database utilized as a part of this study:

- The test column is a hollow steel section.

- The failure of the test column as reported is due to fire and axial force (by changing the steel
section — slenderness ratio, surrounding temperature gradient, and effect of eccentricity of loading
with thermal gradient) .

- The range of test temperature is (20 -764 °C).

- The slenderness ratio, L/r, between (7.5-74).

Table 2 summarizes the ranges of the parameters in the selected database.

5. NEURAL NETWORK DESIGN AND TRAINING

To train the ANN models, first, the full training data file is randomly split into testing and training
data sets. The multilayer feed forward and back-propagation technique is used to develop and train
the NN model of this study where the sigmoid transform function adopted.

A decent expectation for these cases is a definitive confirmation test for the ANN models. These
tests must be connected for (input and output) reaction inside the domain of training phase.
Preprocessing of data sets by scaling was completed to upgrade the preparation procedure of the
neural system. At that point, to keep away from the slight velocity of learning close to the end

557



AV-Qadisiyali Journal For Engineering Sciences, VoL 9......IN®. 4....2016

focuses particularly of the output range because of the property of the sigmoid capacity, in this
manner, the input and output sets were scaled between the interims (0.1 to 0.9).

The back-propagation learning algorithm was employed for learning in the MATLAB program
(Demuth, et al., 2006) B! Every train of the network comprised of one disregard the whole 82
training information sets. The 12 testing information sets were utilized to screen the training
progress. Distinctive training capacities accessible in MATLAB system were tested for the present
application.

The scaled conjugate gradient (SCG) techniques built in MATLAB ended up being proficient
preparing capacity, and along these lines, was utilized to develop the neural network model. This
preparation capacity is one of the conjugate gradient algorithms that begin preparing via seeking in
the steepest drop bearing (negative of the gradient) on the primary cycle. The network architecture
is acquired by recognizing the quantity of hidden layers and the quantity of neuron units in every
hidden layer. The system learns by contrasting its yield for every example and an objective chose
yield for that example, after that the procedure of computing the error and propagating an error
work in reverse through the neural system is finished. To utilize the trained neural network, new
values for the info parameters are displayed to the network. The network then ascertains the neuron
yields utilizing the current weight values created in the preparation procedure.

6. ARCHITECTURE OF NN MODEL

Distinctive ANN architecture exists, the surely understood are (Rumelhart et al., 1986) [lO],
(Eberhart et al., 1990) [4l: Contestant learning NN, Boltzmann machine, Hop-field network, and
Back propagation (multi-layered) network. The last sort obtains its denomination from the method it
learns, by back-propagating the errors seen at the yield nodes (Abbes, 2006) ™.

A multilayered feed-forward NN with a back-propagation algorithm was embraced at present study.
The ANN was developed using the popular MATLAB software package (Abbes, B., 2006) ™.

A regular case of back-propagating system of network architecture is appeared in Figure. 2, the
preparing units are masterminded in multi - layers in this neural network model. Each NN model
has an input layer, an output layer, and various hidden layers. The last register muddled relationship
amongst examples, and the spread happens in a feed-forward manner, from the input layer to the
output layer. Connected with every linkage between two neurons is a numerical quality Wijj, which
speaks to the heaviness of that association (Ghaboussi et al., 1991) W;; weight of association
among units i and j. These ones weights are altered amid the preparation of the neural system in an
iterative procedure. At the point when the iterative procedure has met, the accumulation of
connected weights catches and stores the data present in the case utilized as a part of neural network
training. To train the ANN models, at the beginning the whole experimental info document was
isolated into training and testing information sets. The network model was constructed. The model
has nine input parameters and one output parameter.

The reason behind this is to think about the criticalness of parameter on steel column capacity in
fire. The models has two hidden layers with fifteen nodes each, and yield layer with single output
neuron giving axial load capacity of steel column. Since the sigmoid function is utilized as
exchange function, however the inputs and in addition the output result are scaled-down in the
scope of (0.1-0.9). The meeting of the models in training depends on diminishing the error of
resilience for mean squared (SSE) error amid the preparation cycles and observing the by and large
the execution of the trained NNs by looking at the outputs. Figure (5) was illustrated the minimum
error could be issued by selected architecture (10-15-15-1). The architecture of the developed ANN
model and its properties are shown in Table (3).

7. RESULTS AND DISCUSSION
The load-bearing capacity of tested columns relies on upon the mechanical properties of the
material, the geometry of the cross-section and column effective length. The predictions of the
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selected ANN model as compared to the experimental values are illustrated in Figures 4-6 for the
choosing training and testing data. The coefficient of correlation (R) was equaled to 0.998, and
0.997 for both training and testing data set, respectively. The accuracy of the predicted ANN values
of the axial capacity for steel columns subjected to fire is shown in Figures (7-10) for the selected
experimental series (S1, S2, S4, and S6); the comparison shows that the predicted ANN values and
experiments are in good agreement.

8. PARAMETRIC STUDY

One of the upsides of neural network models is that parametric studies can be effectively done by
just differing one information parameter and all other info parameters are set to consistent qualities.
Through parametric studies, it can confirm the execution of model in reproducing the physical
conduct of steel column under the impact of fire because of the variety in a specific parameter
values. The impact of different parameters on load carrying capacity of columns under fire was
investigated, such as column cross section and gross geometric slenderness ratios, and load
eccentricity. Temperature is a major parameter influencing the structural action of a steel column in
fire. The impact of the different column shapes at elevated and at ambient temperatures on the
ultimate strength of column decrease of both strength and stiffness with increasing temperatures
was analyzed.

8.1 Effect of Slenderness Ratio with Thermal Gradient

Figures (12-15) demonstrates the linkage between critical stress, ocr, and slenderness ratio for

expanding temperature. The peak stress is non-dimensional with respect to normal temperature

yield stress, oy.

e At 300 C° a comparative curve is acquired yet the critical stress is obviously diminished

contrasted and the encompassing temperature situation. This diminishment is around 20% for

slenderness ratios until 80 however get to be insignificant for slenderness ratios more noticeable

than around 120.

e At temperatures (T > 200 C°) the curves own oneself frame however still the peak stress
diminishes with expanding temperature because of mellowing of the material that is anticipated
well by ANN model. For slenderness ratios greater than 120 there exists a decent estimation to the
peak stress where loss of rigidity is obvious whereas in the least slenderness ratios district the loss
of ferocity commands the behavior. Plainly for all slenderness ratios the impact of buckling is
imperative.

The same data in Figures (12-15) given in Figure (16-19) as the non-dimensional ratio (oc / oy)
versus temperature. The cross-sectional capacity decreases with increasing cross-sectional
slenderness ratios and serves as an upper boundary of the load-bearing capacity of a column. It is
seen that to a great degree stumpy columns lose strength quality a tiny bit at a time as the
temperature greater than 400° C. The lowering in the buckling stress gets the chance to be brisk as
the temperature augments further.

e The reaction of middle columns, (40 > L/R < 80), is like that of stumpy columns however at

decreased buckling stress. Be that as it may, in this scope of (L/R) ratios the lessening in stress with

expanding temperature is regular and demonstrates no sudden drop, because of the collaboration
amongst buckling and yielding.

e The slim sections of steel columns, (100 > L/R < 140), react distinctively by showing an

abundantly decreased rate of loss in strength within the temperature domain (20°C < T < 300°C).

This domain diminishes further with expanding slenderness ratios. The Euler buckling for slender

column is obviously more critical, and the impact of material stiffness is in this way more

purported.

e At temperatures greater than 300° C the axial bearing capacity starts to lessen all the more

quickly.
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The cross-sectional capacity decreases with increasing cross-sectional slenderness ratios and serves
as an upper boundary of the load-bearing capacity of a column.

8.2 Effect of Eccentricity of Loading with Thermal Gradient

The relationship between thermal tendency and loading eccentricity is examined in this part for
series 1. Temperature tendency tempts eccentricity as a consequence of the movement in the neutral
axis and this connected with eccentricity of loading may have a few critical impacts on the conduct
of a column in fire. Along these lines the purpose of utilization of the used eccentricity impacts its
impact on the reaction of the columns.

For more slender column, L/R> 120, column demonstrates a diminishing impact of used
eccentricity of loadings with expanding slenderness ratios. This might be as a consequence of more
impelled thermal bowing that is straightforwardly relative to the column length.

The load-eccentricity characteristics of the intermediate column, 20 < L/R > 60, are schemed at
increasing temperature gradient. It is fascinating to observe that the eccentricity of the limit of
maximum column load capacity slightly effected with temperature gradient.

9. CONCLUSIONS

In this study, the ANN model was developed to predict the axial load capacity of steel columns in
fire. A back-propagation artificial neural network (BPANN) was used. The measured experimental
rates are compared with the axial load capacity calculated from ANN model. A parametric study
was carried out to explain the effects of various parameters on the behavior of axial load capacity of
steel column. From this study it can be concluded the following:

e The ANN model is active and valid to simulate the behavior of axial load capacity of steel
columns in fire, the ANN predictions are accurate provided that the input data are within the
ranges used for training the NN.

e ANN algorithm is a powerful and economical apparatus for completing parametric study
among a few parameters that influence physical marvel in engineering as showed for the instance
of axial load capacity of steel columns in fire.

e From parametric study the thermal gradient, slenderness ratio and initial imperfection are the
major factors effect on the axial load capacity of steel columns in fire.
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Table 1: Experimental Database

o (<)
5 =~ | =~ | B T S e Z
Specimen €| e E = EIZ|E|IS|S S gé
= =| 7| S | =z =
5 T|=| =& %|lx|c2|™| 33
Series 1,Pauli et al.(2012)
SHS200_Stub_20C 20 [200[200| 5 [600]0.1| 0 [355[510|210| 1815
SHS200 Stub_20C 20 [200[200| 5 |600[0.1| O [355[510[210| 1658
SHS200_Stub_400C 400[200[200| 5 [600]0.1| 0 |355]/510(210| 969
SHS200_Stub_550C 550 200[200| 5 |600]0.1] 0 |355[510[210| 687
SHS200 Stub 550Css | 550 200[200| 5 |[600]0.01| 0 [355|510[210| 542
SHS200 Stub_700C 700[200[200] 5 |600]0.1] 0 |355[510[210] 201
Series 2,Pauli et al.(2012)
SHS100 Stub_20C 20 [100[100] 4 [300]0.1] 0 [355|510/210] 628
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SHS100_Stub_400C 400100100 4 [300] 01| O |355]|510]210 628
SHS100_Stub_550C 550100100 4 [300]0.1| O |355]|510]210 361
SHS100 Stub 550Css | 550 (100|100 4 |[300|0.01| 0 |355|510]|210 286
SHS100_Stub_700C 700100100 4 [300] 0.1 | O [355]|510]210 103
SHS100 Stub 700Css | 700|100|100| 4 |[300]0.01] 0 |355|510]210 71
Series 3,Pauli et al.(2012)

SHS100 SL _20C 20 |100]|100| 4 {1980/ 0.1 | 0 |355|510]210 490
SHS100 SL _400C 400 100|100| 4 [1980/ 0.1 | O |[355]|510]210 354
SHS100_SL_550C 550|100 |100| 4 [1980] 0.1 | 0 |355|510 (210 227
SHS100_SL_550Css 550100 100| 4 (1980/0.01| O [355]|510]210 215
SHS100 SL_700C 700]/100|100| 4 [1980/ 0.1 | O [355]|510]210 77
Series 4,Pauli et al.(2012)

SHS160 Stub _20C 20 /160|160 5 |480[ 01| O |355|510(210| 1225
SHS160_Stub_400C 400|160|160| 5 [480]0.1| O |355|510]210 795
SHS160_Stub_550C 550160|160| 5 |[480] 01| O [355]|510[210| 468
SHS160_Stub_550Cs 550|160|160| 5 [480|0.02| 0 [355]|510|210| 403
SHS160 Stub 550Css | 550 (160|160 5 [480]0.01| 0 |355|510]210 364
SHS160_Stub_700C 700160160 | 5 [480]0.1| O [355]|510]210 138
SHS160_Stub_700Cs 700160160 | 5 |[480]0.02] 0 [355]|510]210 88
Series 5,Pauli et al.(2012)

SHS160 SL 20C 20 |160]|160| 5 |1840/ 0.1 | 0 |355(510|210| 1089
SHS160 SL _400C 400)|160|160| 5 [1840[ 0.1 | O |[355]|510]210 760
SHS160_SL_550C 550|160 |160| 5 (1840/ 0.1 | 0 |355|510 (210 467
SHS160_SL_550Cs 550|160 | 160 | 5 [1840/0.02| 0 |[355]|510 210 428
SHS160 SL _700C 700160160 | 5 [1840/ 0.1 | O [355]|510]210 130
SHS160 SL 700Cs 700|160 | 160 | 5 [1840/0.02| 0 |[355]|510 210 98
Series 6,Pauli et al.(2012)

RHS120 Stub 20C 20 |120]| 60 [ 36|360| 0.1 | O |355|510]210 483
RHS120 Stub 20C z10 | 20 |120| 60 | 3.6 {360 0.1 | 10 | 355|510 210 356
RHS120 Stub 20C z50 | 20 |120| 60 [ 3.6 {360 | 0.1 | 50 | 355|510 210 161
RHS120 Stub_400C 400|120 60 [ 36 (360 0.1 | O |355[510]210 408
RHS120 Stub 400C z10|400|120| 60 | 3.6 {360 0.1 | 10 | 355|510 210 280
RHS120 Stub 400C z50| 400 120| 60 [ 3.6 {360 | 0.1 | 50 | 355|510 210 133
RHS120 Stub_550C 550120 60 | 3.6 [360] 0.1 | O [355]|510]210 257
RHS120 Stub_550C 210|550 120| 60 | 3.6 {360 | 0.1 | 10 | 355|510 | 210 205
RHS120 Stub 550C z50| 550 | 120 | 60 | 3.6 {360 0.1 | 50 | 355|510 210 87
RHS120 Stub_700C 700120 60 | 3.6 [360] 0.1 | O [355]|510]210 74
Series 7,Pauli et al.(2012)

RHS120 M 550C z0 550120 60 | 3.6 [850] 0.1 | O [355]|510]210 226
RHS120 M 550C z30 |550120| 60 [ 3.6 {850| 0.1 | 30 | 355|510 210 96
RHS120 SL _20C _z0 20 |120| 60 | 3.6 {1840/ 0.1 | 0 |355(510]210 348
RHS120 SL_20C_z10 20 |120| 60 | 3.6 {1840 0.1 | 10 | 355|510 210 211
RHS120 SL 20C 750 20 | 120 | 60 | 3.6 {1840] 0.1 | 50 | 355|510 | 210 102
RHS120 SL 400C z0 |400|120| 60 | 3.6 {1840/ 0.1 | 0 |355|510]210 242
RHS120 SL 400C z10 |400|120| 60 | 3.6 {1840] 0.1 | 10 | 355|510 | 210 139
RHS120 SL 400C z50 |400120| 60 | 3.6 |{1840] 0.1 | 50 | 355|510 210 73
RHS120 SL 550C z0 |550|120| 60 | 3.6 {1840/ 0.1 | 0 |355|510] 210 186
RHS120 SL 550C z10 |550120| 60 | 3.6 {1840/ 0.1 | 10 | 355|510 210 111
RHS120 SL 550C z50 |550|120] 60 | 3.6 {1840] 0.1 | 50 | 355|510 210 49
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RHS120 SL 700C z0 [700]120] 60 | 3.6 1840/ 0.1 | 0 [355[510[210] 71
Series A, Uppfeldt (2012)

All 609|200|200| 5 [900[0.1] 0 [314|510[210| 694
Al12 685|200[200] 5 [900]0.1] 0 [314]|510[210] 567
A13 20 [200[200| 5 |900| 0.1 | 0 |314[510|210] 1129
A15 7641200[200| 5 [900[0.1] 0 [314|510[210| 463
Al6 20 [200{200| 5 |900] 0.1 | 0 |314]510|210| 1118
Series B, Uppfeldt (2012)
B11 676[150[150] 3 [900]0.1] 0 [363[510][210] 203
B13 20 |150[150| 3 |900|0.1| 0 |363][510|210| 398
B14 720[150|150| 3 [900[0.1| O [363|510[210| 165
B15 588|150 |150| 3 [900| 0.1 | 0 |[363|510[210| 248
B16 20 [150[150] 3 [900] 0.1 ] 0 [363[510[210] 393

Table 2: Range of Input Parameters in Database

Input parameter Ranges
Minimum | Maximum

Temperatures, °C 20 764
B, mm 100 200

H, mm 60 200

t, mm 3 5
L, mm 300 1980
Strain Rate 0.01 0.1

e, mm 0 50

Fu, MPa 314 363

Table 3: Architecture of the developed model and its properties

ANN Used Model

Training algorithm

Back probation

used algorithm
Architecture 10-15-15-1
Performance
function in terms of 0.01
SSE
Learning Algorithm Learn gdm
Activation Function | 09819~ Logsig-
purelin
Number of epochs 5000

required for training
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Figure 2: The schematic representation of network processing within an artificial neuron.
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Figure 3: ANN Architecture.

Best Validation Performance is 8172.5111 at epoch 3

Train
Validation
Test
.......... Best

Sum Squared Error (sse)

40 B0 8O0 100 120 140 160 180 200
200 Epochs




Al-Qadisiyalt Journal For Engineering Seiences,  Woll 9......IN6. 4....2016

Figure 4: ANN training performance.
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Figure 6: ANN training states.
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Figure 7: Comparison of results from ANN-model and experiments for series S1.
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Figure 8: Comparison of results from ANN-model and experiments for series S2.
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Figure 9: Comparison of results from ANN-model and experiments for series S4.
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Figure 10: Comparison of results from ANN-model and experiments for series S6.
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Figure 11: ANN-model results for series (S1, S2, S4, and S6) at different temperature.
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Figure 12: Variation of critical stress with slenderness ration at increased temperature for series 1.
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Figure 13: Variation of critical stress with slenderness ration at increased temperature for series 2.
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Figure 14: Variation of critical stress with slenderness ration at increased temperature for series 4.
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Figure 15: Variation of critical stress with slenderness ration at increased temperature for series 6.
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Figure 16: Variation of critical stress with temperature for series 1.
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Figure 17: Variation of critical stress with temperature for series 2.
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Figure 18: Variation of critical stress with temperature for series 4.
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Figure 19: Variation of critical stress with temperature for series 6.

570



