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A B S T R A C T

Since the Flexible field effect transistor (F-FET) is the building block of any sophisticated electronic circuit, 

particularly in the area of wearable electronics and biomedical sensors, it has drawn a lot of attention 

recently. It is usually fabricated using stretchable semiconductors over polymeric substrates. This paper 

displays a brief overview of the current fabrication techniques of the F-FET, specifically in terms of the 

type of substrates and nano semiconductor technologies. As for the applications, flexible devices such as 

graphene, carbon nanotubes, and nanoparticles seem to be a candidate for future flexible devices due to their 

excitant electronic and stretchable characteristics.

© 2021 University of Al-Qadisiyah. All rights reserved.   

1. Introduction 

1.1 F-FET structure

Typically, F-FET consists of a source, drain, and gate. It constricts on an 

insulating substrate.  The source and drain are deposited on a semiconductor 

and connected to an external power supply through conductive electrodes, 

usually gold,  copper, or silver. The gate of the FET is usually fabricated 

either on the top or the 

is called the top or bottom gate (Fig.  1 ).

Basically, the charge carriers flow through the FET under the control of the 

applied gate voltage. The relationship between VGS and  IDS is IDS= 

µ(WC/2L) (VGS-VT)2, where IDS is the current that is flowing from drain to 

source, C  is the insulator capacitance, VT is the threshold voltage, W  is the 

width of the channel, and L is its length, Schneider, et al. [1]. 

Figure 1. FET structure; (a) with a bottom gate;  (b) with a top gate; (c) F-
FET with a flexible substrate; (d) Electronics on a flexible substrate

(a)

(b)

(c)
(d)
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1.2. Effect of bending on F-FET characteristics
Based on reported articles [2, 3], bending an F-FET causes two potential 

effects on the F-FET properties. First, it affects the I-V characteristic. 

Second, it affects the electron mobility of the F-FET. As illustrated in Fig.

2, the effect of bending is also depending on whether the bending is upward 

or downward. Remarkable differences have been seen in the electron 

mobility and the I-V curve between the downward bending (Fig. 2-a) and 

upward bending (Fig. 2-b). However, bending in the same direction leads 

to a very slightly changing in the F-FET properties.

Figure 2. (a) Schematic of downward bending of  F-FET on PET 
substrate and corresponding I-V curve and electron mobility. (b) 
Schematic of upward bending of  F-FET on PET substrate and 

corresponding I-V curve and electron mobility [4].  

2. Types of flexible substrates

The material of a substrate decides the mechanical properties such as the 

strain and bending angle of the fabricated device. This is why the first thing 

that one needs to think about is substrate flexibility. The strain of a substrate 

layers upon the substrate. The strain can be calculated by Yin et al. [5]:

S=    

Where tL and tS are the thicknesses of the layer and the substrate 

respectively. While YS and YL 

the layer respectively and R is the radius after bending. It should be 

mentioned that the conductivity of the device is dimension dependent, 

which could be changed with bending or stretching [5, 6]. 

2.1. Polyethylene terephthalate (PET)substrate

Basically, PET is a polyester family. Depending on the thickness, PET 

could be rigid or flexible. It is lightweight, low cost, thermally stable, and 

moisture resistant Bach et al. [7]. PET has a Young modulus of 2800-3100 

MPa, a dielectric constant of 60 Kv/mm, and a melting point of around 250 
0C Faraj et al. [8]. It has been used in the design of flexible substrates for 

several applications such as flexible antennas [9, 10], biosensors[11, 12]

wearable sensors Gao et al. [13], and flexible electronics [14-16]. Due to 

its nice optical properties (optical transmission of  85% ) and flexibility

under bending conditions MacDonald [17]. PET becomes a candidate for 

flexible displays. Optimal printed thickness and spacing for electronic 

application and also the thermal operation of the PET substrate have been 

reported by Riheen et al. [16], it was proved that the optimal spacing of 

inkjet printing for electronic application is around 20 µm and thermally 

durable at 120 0C. Fig. 3-a shows a photo image of the PET, while Fig. (3-

b) is the AFM image of the PET, it shows the mean square of the surface 

roughness, which is about 13.5 nm [17].

Figure 3. (a) PET sheet (b) Surface morphology of  PET [17].

2.2 Polydimethylsiloxane (PDMS) substrate

PDMS has been used as a flexible substrate due to its transparency, 

tailoring, chemical stability, and flexibility. In addition, it is easy to 

construct with the desired thickness Qi et al. [18]. It has a Young modulus 

of 1.4 MPa and dialectic strength of 27 kV/mm. These properties make 

PDMS used in microfluidics and electronic devices [18, 19]. Furthermore, 

PDMS is a biocompatible material, meaning similar to the human tissue,

B
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this makes it favorable in the construction of biosensors Victor et al. [20]. 

Fig. 4 shows a photographic image of a PDMS layer. 

 

 

 

 

 

 

 

 

 

Figure 4. Flexible PDMS substrate. 

2.3. Polyimide substrate 

Polyimide is another interesting flexible polymeric material that has been 

used as a flexible substrate. In fact, multiple properties made Polyimide an 

excellent choice such as flexibility, lightweight, low cost, relatively high 

operating temperature (up to 400 0C) and moisture resistance, Young 

modulus of 4 GPa, and a dielectric constant of 3. It has been used as a 

flexible substrate in many applications, for example, solar Caballero et al. 

[21] cells, flexible printed circuits Wang et al. [22], biomedical probes, and 

wearable devices[23, 24]. Fig. 5-a shows one of the applications of 

polyimide in biomedical probes. Fig. (s-b) is the AFM image of the 

polyimide, it shows the surface roughness is 22.52 nm, which is accepted 

for many applications. 

 

 

 

Figure 5. (a) bio-medical probe with a flexible Polyimide substrate  (b) 
AFM image of a polyimide sheet with 22.52 nm surface roughness [25, 

26]. 

3. Type of flexible semiconductor materials for F-FET 

3.1. Carbone nanotube (CNT) 

CNT has been used for several applications due to its excellent electronic 

and mechanical characteristics. High electron mobility, (2-6)×104 cm 2 /(V 

×s), high stable current of 109 A/cm2, and high electrical conductivity 

(106 to 107 S/m ) Mora et al. [27] make CNT a promising for the design of 

high- speed F-FET [28-31]. It has also been used as a sensor, such as 

humidity and piezoelectric sensors [32-35]. Additionally, the  CNT s 

mechanical properties have been studied and Young's modulus was 

calculated to be on the order of 1TPa and the tensile strength of CNT-

polymer composite of 11-63 GPa Arash et al. [36]. These exceptional 

properties made it compatible with the applications of flexible devices 

Esawi et al. [37]. CNTs can be deposited on a flexible substrate using spray 

coating. This method is the simplest, most low-cost, and most reliable 

method Abdelhalim et al. [38].  

3.2. 2D materials 

Graphene is a good example of 2D material, a hexagonal structure (Fig. 6), 

that was invented by Geim and his group using mechanical exfoliation [39, 

40]. Since the invention of graphene, many research groups have worked 

on it to investigate its properties and potential applications. Basically, 

graphene has a lot of amazing electrical characteristics, for example, high 

charge mobility (200 cm2/V×s) Bolotin et al. [41], excellent mechanical 

characteristics (Young modulus of 1 TPa), and nice thermal conductivity 

(3500W/mK to 5000W/mK) Hu et al. [42]. Therefore, graphene is 

nominated for future sensors and electronics [28, 43-49]. S. Park et al. has 

fabricated a F-FET that has a 95 GHz cutoff frequency Park et al. [50]. 

While F. Lui and his group constructed an F-FET with a large flexible area 

Liu et al. [51].  

Graphene can be grown directly on a flexible substrate by plasma-enhanced 

chemical vapor deposition (PE-CVD) Lee et al. [52]. Whereas the simplest 

method for graphene deposition on the flexible substrate is by transfer 

method. In this method, a CVD graphene is grown on metal such as copper 

then a thin film of Poly(methyl methacrylate( PMMA) polymer, the e-beam 

resist, is deposited on graphene. Then the metal etched. The 

PMMA/Graphene layers are transferred to a flexible substrate. Finally, the 

PMMA is dissolved by a solvent Martins et al. [53].  

 

 

Figure 6. Scanning tunneling microscope (STM) image of a graphene 

sheet shows its hexagonal structure [54]. 

3.3. Zinc oxide (ZnO) 

Recent studies of ZnO indicated a lot of interesting properties that make it 

durable for many applications. The wide bandgap of ~3.4 eV, and the 

Young modulus of 64-144 GPa, make it applicable for flexible transistors 

and sensors [55, 56]. Furthermore, since doping ZnO was successfully 

doped, then both n-type and p-type semiconductors can be constructed. This 

led to the ability to fabricate not only transistors but also logic gates.  

On the other hand, the most common method for growing ZnO on a flexible 

substrate is the inkjet printing method Ko et al. [57], physical vapor 

deposition (PVD) Kumar et al. [58], and hydrothermal Baruah and Dutta 

[59].  

 

3.4. Organic semiconductors 

Originally, organic materials, which are hydro-carbonic materials, have 

been used as an insulator in the microfabrication process. However, the 

(a) 

(b) 
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conductivity of the organic materials was successfully modified to be close 

to that of semiconductors and metals after exposure to bromine, iodine, or 

chlorine [48, 60]. This led to the invention of the conductive polymers. 

These polymers have interesting electrical, and optical, as well as their 

plastic and flexible, properties. Several research groups [61-63] used 

organic semiconductors in the design of F-FET as it is cheap and flexible. 

But the bottleneck is that it is relatively slow carrier mobility that makes 

the F-FET slow. However, growing single-crystal organic semiconductor 

Li et al. [64] improved the electron mobility with an average of 5.2±2.1 

cm2/Vs compared to 1.5 cm2/Vs of the regular organic semiconductor. This 

made it comparable to the conventional semiconductor transistors. Fig. 7 

displays flexible organic transistors. 

 
 

 

Figure 7. Photographic image of organic transistors [65] 

4. Significant applications of flexible electronics 

Recently, the trend toward rubber electronics has become significant due to 

the presence of many applications and the emergence of modern 

technologies. For example, in the medical field, a group of rubber sensors 

has appeared, which are used in the field of optogenetics, through which 

brain signals are read. This technology is considered one of the promising 

technologies that will open the door wide toward a new generation of 

medical devices. Energy scavenging is another application in the field of 

stretch electronics. This field includes the manufacture of stretchable RF 

antennas with their electronics in a flexible substrate. This antenna is called 

a patch antenna, which is a low-cost and simple structure. Such technology 

can be used in wearable devices that are used to collect energy from the 

environment. This technique probably going to be the building block for 

future powerless portable devices. 

5. Conclusion  

The progress in the F-FET to date is a result of work in multiple directions. 

These directions can be categorized into materials of a flexible substrate 

and the type of semiconductor. As for the semiconductor materials most 

research groups are currently working on nano and organic semiconductors. 

The field of flexibility seems to be promising due to its many potential 

applications, particularly in medical instruments and healthcare. This paper 

has attempted to summarize the fabrication methods and materials that 

probably help upcoming research to enter this field. Nano-flexible devices 

such as graphene. , carbon nanotubes and nanoparticles seem to be 

candidates for future electronics as they have remarkable properties, 

particularly their electronic and mechanical properties. 
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