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A B S T R A C T 

The mechanical design of metals must deal with structures collapsing due to cracks occurring in the material. 

This study focused on the edge crack at non-proportional cycle loading because it propagates quickly. This 

research attempted to determine two mathematical models that could predict the crack propagation rate for 

thin samples of aluminum alloy types 6061 and 5052 under constant tensile stresses and cyclic shear stress 

applied within the elastic limits of the material using Griffith energy of dynamic fracture. This was 

performed to evaluate if these models can predict crack growth rates and compare them with the numerical 

results of a computer system in the ANSYS program R1 2021. The direction of the crack path was calculated 

and compared with the analytical program. The results of the two mathematical models in predicting the 

dynamic growth rate in the studied alloys gave low error rates to the numerical solution.  

  

© 2023 University of Al-Qadisiyah. All rights reserved    

1. Introduction 

When the value of the stress intensity factor for the material (KI) reaches 

the critical value as a result of the stress that is applied to it, then the crack 

starts to grow gradually, passing the first stage of all three stages of 

spreading a crack, which is the stage of not growing in it because the 

intensity stress factor equivalent (Keq) value is less than the intensity stress 

factor endurance (Kth) value according to the Eq. 1 [1]. It is important to 

note that mechanical fracture in a structure occurs due to the presence of 

cracks. The second stage is when the crack develops in a stable state, which 

is characterized as occurring when the value of the intensity stress factor 

equivalent (keq) reaches or is greater than the allowable limit. This stage 

occurs when the fracture is stable. This step is symbolized by the Paris 

equation [2-3], which may be written as follows: Eq. 1. 

                               
da

 dN
=  C(Δkequ)m                                               (1) 

Where C and m constant factors are discovered empirically, (da/dN) is the 

ratio of the difference in crack length to the difference in number of cycles, 

and it is a linear stage in which the length of the crack grows with the 

increase in the number of cycles. The last stage, which is the instability in 

the formation of the fracture, is one in which the growth is fast, and collapse 

occurs while it is taking place. Many studies are being conducted in an 

effort to understand and find a treatment for the propagation of cracks in 

materials, such as spot welding. Al Shamma and Ahmed [4]investigated the 

influence of crack formation as well as the study of raising the stress ratio 

on a thin plate by increasing the number of rotations. This was done using 

an impact load.  

Jasim [5] investigated several different kinds of epoxy coatings that can 

enhance the resistance of the material to the occurrence of dynamic crack 

propagation and raise the resistance of the material to fracture. These epoxy 

coatings have the potential to be employed to cover water tanks  Kopei [6] 

suggested that liquid be added to the inside of the rods that back up huge 

pumps in order to strengthen their resistance to secondary cracks and 

fractures.  
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Al- Jaafari [7] subjected a variety of aluminium alloys to thermal treatment 

and investigated the impact that this modification had on the redistribution 

of nanoparticles that occurred as a consequence of the treatment on the 

dynamic crack formation condition when the number of cycles was 

increased. Ibrahim Mhuwes [8] conducted research to determine the 

amount of fracture propagation in plates of varying thicknesses and at an 

assortment of angles. But these treatments are just temporary solutions; the 

best method to fix the problem is to enhance the technical design and ensure 

no fractures in the machine or the mechanical structure. For this reason, a 

prediction about the time of occurrence of the crack as well as its rate of 

spread is required in order to stop its propagation. Additionally, it is 

necessary to locate a suitable mathematical model capable of giving results 

comparable to the development of the crack and its behaviour in real life. 

The equations that were generated were used on two different series of 

aluminium alloys [9-10], type 6061 and type 5052, at the UNI-standard 

system at room conditions (Humidity of 20% and Temperature of 27 C). 

Where the dimensions of the sample are 160 X 40 mm with a thick 2 mm 

and a length edge crack is 5 mm.  
 
The main objectives of this study are as follows: 

• Development of two unlike mathematical models that can predict the 

percentage of crack propagation in the edge for the two alloys. 

• Looking for the optimal derivative calculation model that will provide 

findings that are as close as possible to those produced by the computer 

analysis software in terms of predicting how the crack will behave in 

the material. 

2. Method 

2.1. Theoretical Analysis 

It is quite difficult to come up with an analytical model that can accurately 

forecast the ratio of dynamic crack propagation and have its findings 

correspond with the actual values that are obtained for the material in real 

life. This is due to the fact that developing such a model requires a lot of 

time and effort. The following assumptions have been worked on to get the 

equations for thin plates that have been subjected to tension load and shear 

cyclic loading under an applied mixed cycling load. Therefore, this research 

endeavored to come as close as possible to the practical results that had 

been obtained by working on two mathematical formulas using Griffith's 

theory of energy within a Linear Elastic Fracture Mechanical LEFM. The 

assumptions that were used to derive the equation were as follows: 

• Hooke's law is followed by the material, which shows linear elasticity. 

• It has the properties of being isotropic and homogenous. 

• The cycling stress occurs along axes that are perpendicular to the load 

that is being tensioned. 

• Shear stress cycling is applied in the plane. 

• A sample is a thin plate with an edge crack.  

2.1.1 . First theoretical approach (separation of modes) 

Since most of the research was concerned with the study of cracks, it was 

found that the Westergaard equation was used in many cases of cracks 

occurring in the material. In this research, it was used in Mode-I and Mode-

II by deriving two mathematical models; the main equation of Westergaard 

was relied upon. The resultant outcomes will then be compared with the 

numerical solution values. 

Apply the Westergaard's stress function in order to analyse fracture 

propagation in the Mode-I  [10]. 

                                   𝛟ZI = 
σ .Z

√Z2−a2 
                                                       (2) 

 

 

 

 

Figure 1. Theory of cracks that show the complex variable functions [10]  

Nomenclature: 
 

 

a length of crack (m) u• the rate of displacement for the Mode II. 
ai the last length in the crack (m) V displacement for the mixed mode (I/II). 

ao the original length of the crack's length (m) v• the rate of displacement for the Mode I . 

C the constant factor of Paris equation, (mm/cycle) / (MPa√𝑚 ).  V• the rate of displacement for the mixed mode (I/II). 

da/dt rate of crack growth (m/sec) w angular velocity (rad /sec). 

E’ modulus of elastic (MPa)   
G the additional amount of released energy (Joule) Greek symbols 

Keq stress intensity factor equivalent ((MPa√𝑚 ) Ɵc Angel of crack, Degree 

KI stress intensity factor for mode I, MPa√m. 𝛔 tension stress (MPa) 

KII stress intensity factor for mode II, MPa√m. 𝛔eff The effective  stress for the mixed mode (MPa) 

Kth stress intensity factor endurance ((MPa√𝑚 ) 𝛕 shear cycling load (Mode-II) (MPa) 

m the constant factor of Paris equation, unitless. 𝛕o max value of shear stress (MPa) 

m mass of the material (K.g)  𝛟ZI Stress function for first mode 

R represents the amount of energy that is being resisted by the 
fracture (Joule) 

𝛟ZII Stress function for second mode 

t time (Sec)   

T total total amount of kinetic energy (Joule) Subscripts 
U The total amount of excess energy (Joule) c critical 

UO the  amount of excess energy per unit of thickness (Joule) eff effective 
u displacement for the Mode-II equ equivalent 

Z 

• • • A B C 



ISRAA MOSLEH AND FATHI ALSHAMMA /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES   16 (2023) 239–246                                                                                      241 

 

 

The following relations are derived from Fig. 1, which is as follows [11]. 

When the complex variable Z gives a complex root for a point located on 

the plate, this point is defined with respect to three points on the plate, 

namely A, B, and C, as following Eqs. (3-5): 

    Z = r . e i𝛉                                                        (3) 

Z - a = r1 .e i𝛉1                                                     (4) 

and       

                    Z + a = r2. e i𝛉2                                                        (5) 

According to the (Eqs. 2-5) have the potential to attain the displacement (v) 

for the Mode-I [13-14]will be as following: 

For plain strain : 

                              v =
2𝜎

𝐸
(1 − 𝜐2). √𝑎2 − 𝑥2   

For plain stress: 

                      v =
2σ

E′
. √a2 − x2                                              (6) 

Where  (1 E`) = (1 − υ2) E⁄⁄  , and v represents the displacement that 

results due to tensile load.  

Assume 𝑥 = 𝑐. 𝑎    (  0 < 𝑥 < 1), let 𝑐1 = 2 √1 − 𝑐2  , use (Eq.6) in the 

equation to find displacement v, as shown in Fig. 2. 

 

 

 

 

 

 

Figure 2. The displacements v and u 

         v =  
c1 .σ.𝑎 

E
                                                  (7) 

According to the reference of the Fracture Mechanics book [10] for the 

Elastic Stress Field Displacement (v), as shown in Fig. 2, is that the crack 

flank field displacement where the coordinate system for  X and Y at the 

beginning of the notch  and for Mode-II is based on the fundamentals of  

Fracture Mechanics book [14]. 

The following is a description of the stress function for In-plane shear 

stress in the Mode–II ( 𝜙𝑍𝐼𝐼), which is denoted by : 

ϕZII = 
τ .z

√(z2−a2 )
                                                     (8) 

According to the source [14], the displacement at the cycle shear stress 

(u) for Mode-II is the outcome of doing an integral [15]. 

      Z՟II =  τ. √z2 − a2                                           (9) 

𝑧 =  𝑥 + 𝑖𝑦 … … … 𝑎𝑡 𝑦 = 0, 𝑧 = 𝑥   &   𝑥 ≪ 𝑎, will result [14], [16]: 

For plane strain 

     u = 
2(1−υ2)

E
 . τ√a2 − x2.  

For plain stress 

                     u =
2

E′
 . τ√a2 − x2                                        (10) 

It is started by measuring the horizontal and vertical displacements at the 

same location, which is at the beginning of the notch, but the effect of the 

displacement u appears when the two surfaces of the crack meet when it is 

assumed that the sample is homogeneous and without deformation 

occurring while it is exposed to loads. 

Where (u) the displacement for the shear cycling load (Mode-II) and value 

of shear stress cycling (𝛕 = 𝛕o . sin ( 
wt

2
))[17], as shown in Fig. 3, found the 

rate of displacement 𝛖• and u•  by derivate the (Eq. 7) and (Eq. 10) 

 

 

 

 

 

 

 

 

 

 

Figure 3. Shear cycling stress 

        v ̇ = 
c1 .σȧ

E`
                                                      (11) 

Where v ̇  is represented by the rate of the displacement that results due to 

tensile load (v) (where the displacement v will change with time and for 

denoting this rate of change d/dt represented by “•”and in this case, the 

change is happening in displacement(v) with length of the crack(a)). 

              u̇ =
c1

E
[a.

w

2
. τo. cos (

wt

2
) + τo. sin (

wt

2
) .

da

dt
 ]                           (12) 

While u̇ is represented the rate of the displacement that results due to shear 

cycling load (u) (where the displacement u will change with time and for 

denoting this rate of change d/dt represented by “•” and in this case, the 

change is happening in displacement (u) with length of the crack(a) and 

change in the rate of the shear cycling load (𝛕o . sin ( 
wt

2
)). 

To find the total kinetic energy (T total) [18] for Mixed-modes I/II. Since the 

kinetic energy  per unite thickness for Mode-I and Mode-II are Non-

directional quantities, it can be summed as follows: 

                        Ttotal =  
1

2
mv̇2 +

1

2
mu̇2                                           (13) 

                                      =  
1

2
. ρ. area. v̇2 +

1

2
. ρ. area. u̇2                       (14) 

After substituting equations v and u, the following are the results of 

integrating the equation: 

 Ttotal =
ρ 

2E2
. Kai

2[(σ2 + τo
2sin2 (

wt

2
)) (

da

dt
)

2

+ ao.
w

2
. τo

2. sin(wt) (
da

dt
)   

                                  +τo
2ao

2 .
w2

4
. cos2 (

wt

2
)]                                        (15) 
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To find the release energy rate (U) [19][20], that is controlled on crack 

extension at the Mixed Modes (I / II) in thin plates [10], [21] for the Fig. 4 

below, 

       U = ∫ (G − R). da = − ∫ R. da +  ∫ G. da
ai

ao

ai

ao

ai

ao
                         (16) 

The total excess energy is: 

                              Uo = (
σ2

2E
+

2(1+v)

E
(τo. sin

wt

2
)

2

)                               (17) 

 

 

 

 

  

 

Figure. 4. Energy balance of the crack [10] 

Physically, it has been scientifically proven in previous studies [11-23] that 

the deformation that appears at the crack edge, which forms the plastic area 

around and at the front of the crack, gives an enhancement to the resistance 

to the appearance of cracks. Therefore the necessary energy that the crack 

needs in order to start growing is higher in the crack at the middle because 

there are two tips of the crack in the center crack in the plate. Since noting 

that the excess energy to start the crack growing is less in the case of a crack 

at the edge, and since studies have shown that the energy circle surrounding 

the crack in the middle crack has a diameter of 2a, the assumption on which 

this research was based was used to be the diameter of the circle less and 

equal to a, as shown in Fig. 5. The amount of excess energy rate per unit of 

thickness in edge crack as follows: 

                           U = ( 
σ2

2E
+

2(1+v)

E
(τo. sin

wt

2
)

2

)
πa2

4
                    (18)    

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The area of energy in the notch edge 

When the fracture begins to spread, the value of the excess energy is 

converted into the total energy, which is converted into kinetic energy and 

heat, where the heat energy is small in a thin plate, and it can be neglected 

(U = Ttotal). 

(
σ2

2E
 + 

2(1 + v)

E
(τo. sin

wt

2
)

2

)
π

4
(ai − ao)2 =

ρ

2E2
. Kai

2[ 

(σ2 + τo
2sin2 (

wt

2
)) (

da

dt
)

2

+ ao.
w

2
. τo

2. sin(wt) (
da

dt
) 

                                               + τo
2ao

2 .
w2

4
. cos2 (

wt

2
)]                         (19)        

When Eq. 19, is the number one model of the crack growth equation. 

2.2. Second theoretical approach ( mixed the modes ) 

In addition to this, the Westergaard's stress function [13] should be used in 

order to analyse crack propagation in Mixed-mode I/II [10]. For the purpose 

of determining the displacement (V) for the Mixed-mode I/II. 

                               V =
2σeff

E′ √a2 − x2  (plain stress )                            (20) 

Assume = 𝑐𝑎       0 < 𝑥 < 1 , let 𝑐1 = 2√1 − 𝑐2, Sub in the (Eq. 20) 

                                 V =
c1.  σeff .a   

E′
                                                (21) 

When the effective stress (𝛔eff) [23] for a combined mode that comes from 

tension load in the axis and cycling shear load in the elastic range in Pascal 

[21], as shown in Fig. 6, comes from the combination of tensile load and 

shear load cycling. 

                         σeff =
1

√2
√[ σ2 + (τo. sin (

wt

2
))2]                                  (22) 

Determine the rate of displacement V by sub (Eq. 22) in (Eq. 21), then 

derive the equation for stress and crack length variables. 

V̇ =
c1

E
[

ao

√2
.

w.τo
2 .sin(wt)

4[ σ2+(τo.sin(
wt

2
))

2
]

1
2⁄

 +
1

√2
[ σ2 + (τo. sin (

wt

2
))

2

]
 
1

2

.
da

dt
 ]       (23) 

 

 

 

 

 

 

                           

 

 

Figure 6. Loads on the sample 

In order to calculate the total amount of kinetic energy (Ttotal ): 

Notch 

edge 
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                                             T total =  
1

2
mV̇2

 

                                          =  
1

2
. ρ. area. V̇2                                    (24) 

After substituting (Eq. 22) and (Eq. 23) into (Eq. 24), finally obtaining the 

total kinetic energy (T total ): 

  Ttotal =     

ρ.kai
2 

4E′2 [
ao

√2
.

w.τo
2 .sin(wt)

4[ σ2+(τo.sin(
wt

2
))

2
]

1
2⁄

+
1

√2
[ σ2 + (τo. sin (

wt

2
))

2

]
 
1

2

.
da

dt
 ]

2

          (25)                                                 

When the crack first started to expand, the value of the excess energy was 

converted into the total kinetic energy (U = Ttotal). when the excess energy 

rate was calculated using (Eq. 18), this was when the crack started to grow 

at an increased rate. 

 

(
σ2

2E
+

2(1 + v)

E
(τo. sin

wt

2
)

2

)
π

4
(ai − ao)2 =

ρ. kai
2 

4E2
∗ 

           [
ao

√2
.

w.τo
2 .sin(wt)

4[ σ2+(τo.sin(
wt

2
))

2
]

1
2⁄

+
1

√2
[ σ2 + (τo. sin (

wt

2
))

2
]

 1 2⁄

.
da

dt
 ]

2

          (26) 

 

The equation for crack growth, model No. 2 that is used to estimate the 

crack propagation rate at any moment after the fracture's beginning with the 

elastic limit. Both of these mathematical models have used the equivalent 

stress intensity factor, denoted by the letter (K equ). This notation represents 

the difference between the highest and lowest possible values of the stress 

intensity factor. The value for constant tension stress 48.8 M Pa was 

determined for both specimens when the length of the crack was held 

constant at 5 mm. The greatest amount of shear cycling was applied to 6061 

AA at 49.08 M Pa and to 5052 AA at 48.06 M Pa. This is the point at which 

the shear stress was at its lowest possible value of zero. Criteria of the 

maximum stress that is used for mixed modes of loads when the value (KII 

> 0) from the references [24-25] was utilized in the calculations of this 

research to locate the crack direction theoretically. Where the values of KI 

and KII are calculated for each sample, and the sum of the values is entered 

into (Eq. 27) to find the direction of the inclination of the crack. The 

principle depends on the stresses surrounding and affecting the crack, and 

the ratios of their intensities to each other are what control the amount of 

inclination of the crack angle. This is done by using the mixed mode of 

loads [27]. 

 

           θc = tan−1(0.25 ∗
KI

KII
−

1

4
√(

KI

KII
)2  + 8     ( At KII > 0)               (27) 

 

3. Numerical simulation  

There are many programs for analysing fracture mechanics that can be 

adopted to predict the occurrence of failure and calculate the rate of crack 

growth, such as ANSYS and ABAQUS [28-30]. These programs use 

different techniques and methods for computing. In this research, the 

mechanical ANSYS version 2021.R1 was used. The simulation stages 

included drawing samples using mechanical APDL with dimensions 160 x 

40 x 2 mm and a crack at the edge 5 mm in a straight specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Dimensions and mesh for alloys 

The work in the program consisted of three parts: the first part included 

drawing in the ANSYS program, entering the dimensions and shape of the 

sample, and choosing the types of sample materials to be tested. The second 

part of directing the program in determining the data related to the variables 

and the quality of the prediction is crack and loads on the sample, where 

the number of elements is 116135, and from the mesh list, a sphere with a 

radius of 1.2 mm is created at the edge of the crack and generate the mesh 

through it with a size of 0.2 mm, while the size of the rest of the mesh 

elements is 2 mm, so that the mesh is smaller in size and to obtain more 

accurate values. The type of elements used on the plate in this study is 

tetrahedral for all sizes of mesh elements. 

From the last static structure, the boundary conditions were entered so that 

Fixed Support was selected for the parts where the sample was installed, as 

well as instructing the remote displacement to apply a cyclic shear load of 

0.00188 mm and instructing the pressure to apply the tensile load to the face 

to be applied. While the third part of the work involved finding the results 

using the Smart Crack Growth method that was used to analyse crack 

growth from a fracture list by selecting a pre-crack type and specifying the 

properties of the material that was entered in the program library, as well 

as the type of fatigue selection in the crack growth option, as well as 

specifying the Law of Paris in using it as a measure of fatigue. as shown in 

Fig. 7. 

4. Results and discussion  

In this part of the investigation, the results obtained analytically from the 

mathematical equations derived for samples of thin aluminium alloys with 

a thickness of  2 mm and dimensions of  160 x 40 mm were discussed, 

where the table. 1 is shown the mechanical properties that used in the study. 

Additionally, a crack was made at the edge at an angle of 90 degrees with 

a length of 5 mm, and periodic loads were applied In-plane. 

Table 1. Mechanical properties for alloys 

Mechanical Properties 6061 AA 5052 AA 

Ultimate stress (N/mm2) 288.95 215.34 
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Yield stress (N/mm2) 249.65 106.23 

Elongation  % 13.8 18.8 

Hardening Vickers test 98 60 

Elastic modules (Gpa) 68.9 70.3 

 

As can be seen in Fig. 5, a constant tension was applied in the direction of 

the sample's longitudinal axis, while a periodic shear load was applied in 

the direction of the crack's parallel axis. Given that the number of cycles N 

is related to the amount of time necessary for growth (t), where the number 

of cycles N was discovered by the time required for growth by constant 

value every 1000 cycles equals 1 minute (This ratio between the number of 

revolutions and the time was determined based on a separated study on an 

apparatus experimental that applied same loads in this study, and the 

number of revolutions was used with a capacity of 1000 revolutions per 

minute), the continuous crack growth in the sample by Increasing the crack 

length (a), the results shown in  Fig. 8 and Fig. 9. Analytical testing 

confirmed that the initial fracture occurred at a cycle count of 250,000 for 

sample 6061 and 100,000 for sample 5052, respectively. In addition, the 

rate of fracture propagation in sample 6061 was discovered to be lower than 

that of sample 5052 through the body in the study that was conducted. It 

was also discovered that The rate of crack growth showed a value 

(0.000194, 0.000222) for sample 6061 in the first and second theoretical 

models, respectively, while the rate of growth in the analytical ANSYS 

program was (0.000208) in units of mm/sec. 

The rate of crack growth over time showed a speed (0.00056034, 0.000633) 

for sample 5052 in the first and second theoretical models, respectively, 

while the rate of growth in the analytical ANSYS program was (0.000666) 

in units of mm/sec.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Length of crack vs. number of cycle N for alloy 5052 

It has been noticed from Figs. 8 and 9 that there is a difference in the growth 

rate between the two sports models, as the first sports model gave more 

speed than the second sports model. Here it must be mentioned that when 

deriving the mathematical equations, the same equation for excess energy 

was relied upon to calculate the two mathematical models, but the 

difference is in the method of finding the kinetic energy, and this means 

that the amount given by the kinetic energy was more significant in the first 

mathematical model than in the second, in order to calculate each 

displacement individually for each mode. 

It was found that the m and C values of the Paris equation were derived 

analytically using the log plot approach both theoretically (model no.1, 

model no. 2). These results are specific to the values of the constants of the 

Paris equation, where, after plotting the results of the relationship between 

the change in crack length and the change in the number of cycles with the 

values of the change in the equivalent stress-intensity factor, those values 

were found for the two models, which are considered values in the case of 

multi-axial load. where the value of C is (1.5849*10-6, 6.309*10-7 ) 

(mm/cycle)/(MPa√𝑚) & m is ( 3, 2.428), respectively was found for alloy 

6061, while the value of C is ( 2.678*10-6, 4.6773*10-6) 

(mm/cycle)/(MPa√𝑚 ) & m is (2.8321, 1.6609), respectively, was found 

for alloy 5052. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Length of crack vs. number of cycle N for alloy 6061 

The crack in sample 5052 theoretically had a length of 16 mm, but the 

numerical analysis results were 18 mm, and the crack in sample 6061 

theoretically had a length of 22 mm, but the numerical analysis results were 

23 mm, indicating a convergence in the results for the second phase study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Total deflection for samples: A. 5052; B. 6061 in ANSYS. 

A 

B 
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In Figures 8 and 9, the change ratios da and dN for the incision at length 

(14.5, 18) mm for samples 5052 and 6061 became closer in slope to 90 

degrees. As shown in Figs. (8-9), indicating that it entered another stage in 

the crack growth propagate ratio at increasing the velocity of the crack. Fig. 

10 shows the values of the location of higher deflections in samples 6061 

and 5052. Where the first and second mathematical models are presented. 

The angle of trace for alloy 5052 is (24.896○), and the angle of trace for 

alloy 6061 is (30.1○), and the software shows that the angle of trace is 

(17.17○, 16.99○) for alloys 5052 and 6061, respectively see Fig. 11 and Fig. 

12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Directions sample 5052 theoretically and ANSYS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Directions sample 6061 theoretically and ANSYS. 

When observing the results of the direction of the cracks shown in the study, 

the difference between the results of the direction can be attributed to the 

difference in the way of understanding the components and properties of 

the material and the effect of the homogeneity of its components in that 

study. 

5. Conclusions 

• Using Griffith's theory of crack development for thin plates, two 

mathematical models were developed in order to discover the crack 

propagation rate and compare the resultant rates with those produced 

by the analytical ANSYS software. 

• It takes a longer amount of time for a crack to grow and approach the 

stage of fracture in aluminium sample 6061 than it does in sample 

5052. 

• The error percentage in crack growth rate in sample 5052 for the 

theoretical model 1 and model 2 relative to the ANSYS program is 

found to be 15.1% and 4.09%),  respectively. 

• The error percentage in crack growth rate in sample 6061 for the 

theoretical model 1 and model 2 relative to the ANSYS program is 

found to be 6.73% and 5.4%),  respectively. 

• The constants of the Paris equation gave good results for the values of 

C and m that were calculated in mixed mode by the effect of multi-

axial fatigue loads. 

• The amount of kinetic energy that was calculated for the separate 

modes gave higher values than that calculated in the case of the mixed 

mode. 
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