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A B S T R A C T 

Several approaches for detecting isomorphism in kinematic chains have been developed in recent literature. 

If two kinematic chains have a 1-1 correspondence and their incidences are maintained, they are isomorphic. 

In this work, a matrix-based method for identifying isomorphism is presented. The new method is based on 

fundamental circuits, vertex degrees, and spanning trees. A unique identifier for isomorphic graphs is 

proposed. Two graphs are isomorphic if their isomorphic identification numbers have the same value. This 

reduces the structural isomorphism test to a comparison of the isomorphic identification numbers of the two 

graphs under consideration. Regardless of vertex labeling of the graphs, which is problematic in other ways, 

similar isomorphic identification numbers are generated for isomorphic graphs. The new method is a 

comprehensive, systematic way for detecting isomorphism during the synthesis of kinematic chains. 

Isomorphic graphs are identified regardless of graph representation. The new approach is verified by the 

atlas of 6-link 2- degree of freedom planetary gear mechanisms (PGMs), the atlas of 5-link 2-degree of 

freedom planetary geared cam mechanisms (PGCMs) as well as some PGMs and PGCMs. 

© 2024 University of Al-Qadisiyah. All rights reserved.    

1.  Introduction

         Planetary gear train (PGT) based mechanisms are extensively 

employed in vehicles transmissions, robot reduction devices, pulley blocks, 

machine and electrical equipment, robots, etc. The creation of planetary 

gear mechanisms (PGMs) is a crucial issue in the development of PGT-

based mechanical equipment. PGTs are composed of central gears and 

planetary gears that revolve around them. Each pair of meshing gears is 

supported by a link known as the planet gear carrier, which keeps the 

distance between gear centers constant. Fig. 1(a) depicts the schematic 

diagram of the famous Simpson planetary gear mechanism (PGM). It is a 

seven-link two-DOF fractionated PGT comprised of a six-link one-DOF 

PGT connected in series with its casing. The additional degree of mobility 

is achieved simply by allowing the gear train to spin as a unit. A fractionated 

PGM has a separation link that can be broken into two parts to separate the 

PGM into two distinct components. As illustrated in Fig. 2 (b), the basic 

structure of this mechanism is a 6-link 1-DOF non-fractionated PGT. With 

the topology of a mechanism described by the topological graph and 

incidence matrix, the mechanism synthesis can be readily handled by a 

computer. Then it will be possible to automate the synthesis of mechanisms. 

A crucial step in the structural synthesis of PGMs is isomorphism 

determination; the accuracy of the isomorphism determination technique 

directly affects the quality of the results of the structural synthesis of PGMs. 

When two graphs are isomorphic, there is a one-to-one correspondence 

between each of the vertices and edges, preserving incidence.  

Detecting isomorphism in kinematic chains is a complex topic that has been 

studied for many years. Detecting isomorphism in kinematic chains 

presents several  challenges: 

http://qu.edu.iq/
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1. Complexity: Kinematic chains may be complex, making it 

challenging to dentify isomorphism in them. 

2. Graph theory: Numerous techniques for detecting isomorphism in 

kinematic chains rely on graph theory, which may contain 

problems with representing mechanisms uniquely.  

3. Computational complexity: Detecting isomorphism in kinematic 

chains may be computationally difficult, especially for large and 

intricate kinematic chains. 

4. Lack of standardization: Since there is no standard method for 

locatingisomorphism in kinematic chains, comparing various 

approaches and results can be difficult. 

 

To develop a reliable and efficient method for detecting isomorphism in 

kinematic chains, it is necessary to address these issues. The goal of this 

work is to establish a simple, entirely automatic isomorphism determination 

method that is based on the rooted graph and its circuit matrix. 

 

1.1 Graph Representation 

According to the method developed by Buchsbaum and Freudenstein [1], 

the conventional graph of the Simpson PGT can be represented, as shown 

in Fig. 1. (c). In graph representation, a vertex denotes a link and an edge 

denotes a joint. In this work, a revolute pair is represented by a thin edge, a 

cam pair by a thick edge, and a geared pair by a dashed edge. The 

conventional graph representation may lead to the generation of pseudo-

isomorphic graphs [2-5]. Pseudoisomorphic graphs are those that are 

kinematically and functionally equivalent to their corresponding PGTs but 

are mathematically non-isomorphic. These PGTs are regarded as 

isomorphic from a functional point of view [6]. The detection of 

isomorphism will be greatly complicated or prone to errors if there are 

pseudo-isomorphic graphs present. As a result, whenever possible, such 

graphs should be avoided. 

Yang et al. [2] introduced a new graph model for representing the structure 

of PGTs, which had both solid and hollow vertices. Revolute pairs with the 

same level are equivalent to multiple-joint and are represented by a hollow 

vertex. Therefore, PGTs with revolute pairs of different levels only have 

solid vertices. For this graph representation, there exist two different types 

of graphs; graphs with one or more hollow vertices and graphs without 

hollow vertex. Since the vertices represent the links, the number of vertices 

should not exceed the number of links. In a hollow vertex graph, the number 

of vertices exceeds the number of links, hence, there is no one-to-one 

correspondence with the PGT.   

 

 

  
(a) Simpson planetary gear 

mechanism. 

(b) Simpson planetary 

gear train. 

  
(c) Conventional graph 

representation. 

(d) Hollow vertex graph 

[2]. 

  
(e) Applying the vertex 

selection technique. 

(f) Rooted graph for 

Simpson PGM. 

Figure 1. The Simpson gear mechanism and its conventional, hollow 

vertex, rooted graph representations. 

1.2 Graph Representation 

According to the method developed by Buchsbaum and Freudenstein [1], 

the conventional graph of the Simpson PGT can be represented, as shown 

in Fig. 1. (c). In graph representation, a vertex denotes a link and an edge 

denotes a joint. In this work, a revolute pair is represented by a thin edge, a 

cam pair by a thick edge, and a geared pair by a dashed edge. The 

conventional graph representation may lead to the generation of pseudo-

isomorphic graphs [2-5]. Pseudoisomorphic graphs are those that are 

Nomenclature: 
 

 

𝐶𝑣 The vertex-circuit matrix Abbreviations 
[𝐶𝑣]𝑤 The weighted vertex-circuit matrix PGM Planetary gear mechanism 

𝑑𝑖 The degree of vertex 𝑖 PGCM Planetary geared cam mechanism 

𝑑𝑖𝑤 The weighted degree of vertex 𝑖 PGT Planetary gear train 

𝐷 The vertex degree array = [𝑑0, 𝑑1, … , 𝑑𝑣−1] DOF Degrees of freedom 

𝐷𝑤 The weighted vertex degree array = [𝑑0𝑤 , 𝑑1𝑤 ,… , 𝑑(𝑣−1)𝑤] FC Fundamental circuit 

𝑒 Number of edges in the graph  VDS vertex degree string  

𝑒𝑔 The number of geared edges   

𝑒𝑟 The number of revolute edges  

𝐹 The number of degrees of freedom.   

𝐹𝐶𝐴𝐴 The fundamental circuit assortment array   

𝐼𝐼𝑁 Isomorphic identification number   

𝑣 Number of vertices in the graph   

    



SAJAD ABDALI ET AL. /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES   00 (0000) 000–000                                                                                      3 

 

 

kinematically and functionally equivalent to their corresponding PGTs but 

are mathematically non-isomorphic. These PGTs are regarded as 

isomorphic from a functional point of view [6]. The detection of 

isomorphism will be greatly complicated or prone to errors if there are 

pseudo-isomorphic graphs present. As a result, whenever possible, such 

graphs should be avoided. 

Yang et al. [2] introduced a new graph model for representing the structure 

of PGTs, which had both solid and hollow vertices. Revolute pairs with the 

same level are equivalent to multiple-joint and are represented by a hollow 

vertex. Therefore, PGTs with revolute pairs of different levels only have 

solid vertices. For this graph representation, there exist two different types 

of graphs; graphs with one or more hollow vertices and graphs without 

hollow vertex. Since the vertices represent the links, the number of vertices 

should not exceed the number of links. In a hollow vertex graph, the number 

of vertices exceeds the number of links, hence, there is no one-to-one 

correspondence with the PGT.   

Links 1, 2, 3, and 4 in the graph depicted in Figure 1 (d) share a common 

joint axis, "a". Vertex selection is the act of changing a revolute edge with 

one that is of the same level [7]. Using the vertex selection approach, the 

graph may be reconfigured to include an articulation point. Hence, the 

graph represents a fractionated, two-DOF PGM. 

The formula for the degree of freedom (F) of a v-vertex graph is 

 𝐹 =  3 × ( 𝑣 − 1)  − 2 × 𝑒𝑟  − 1 × 𝑒𝑔                              (1) 

where the number of revolute edges is denoted by 𝑒𝑟  =  𝑣 − 1 and the 

number of geared edges is denoted by 𝑒𝑔  =  𝑣 − 1 − 𝐹. 

For the Simpson PGM shown in Figure 1(d), we have 𝑣 =  7 and 𝑒𝑟  =  6, 

𝑒𝑔  =  4. Equation (1) gives 𝐹 =  3(7  −  1) − 2 × 6 − 4 =  2. For the 

PGT shown in Figure 1(c), we have 𝑣 =  6  and 𝑒𝑟  =  5 , 𝑒𝑔  =  4 . 

Equation (1) gives 𝐹 =  3(6  −  1) − 2 × 5 − 4 =  1. Therefore, it is a 

fractionated 2-DOF PGM. It consists of a 1-DOF PGT that is held up by 

the frame on a central axis. However, this graph model has trouble 

accurately modeling a PGM containing multiple joints. This necessitated 

the use of a graph that is consistent with its mechanism called the rooted 

graph. The vertex which represents the frame of a mechanism is referred to 

as the root in a rooted graph representation. Because at least one link in the 

PGT has its geometric axis rotated around the fixed axis of the mechanism, 

all graphs must have a root. Figure 1 (f) shows the rooted graph for the 

Simson PGM. Vertex 1 is the root. 

1.3 Literature Review                                                                          

 Methods to identify and remove isomorphic graphs were used during the 

synthesis of PGTs [1, 2, 8-17]. Two graphs are said to be isomorphic if their 

edges and vertices maintain adjacency characteristics. Ravisankar and 

Mruthyunjaya [12] proposed an approach for detecting isomorphism in 

unlabeled graphs by employing adjacency matrix characteristic 

coefficients. Rao and Rao [13] identified isomorphic graphs using the 

Hamming matrix approach and the moment technique. Based on their prior 

perimeter-loop-based isomorphism identification approach, Yang and Ding 

[14-16] introduced a fully automated methodology for detecting isomorphic 

PGTs. Rai and Punjabi [17] described a simple link labeling approach that 

was utilized to identify a binary sequence that yields the largest binary code. 

To compare the isomorphism of PGTs, maxi codes are constructed, 

involving binary code and binary sequence. There are several empirical 

isomorphism testing methods that rely on a number of distinctive 

characteristics that, when combined, are sufficient to detect isomorphism 

[18-23]. However, there is a chance that structural isomorphism will go 

undetected. Counterexamples have been reported. 

2.  Fundamental principles 

 PGMs are distinguished by their unusual kinematic structure, which is 

comprised solely of revolute and geared joints. A spanning tree is formed 

by the revolute edges of a rooted graph. The spanning tree is an acyclic 

subgraph of the original graph, consisting of all of its vertices but no circuits 

[18]. As shown in Figure 2 (b), a spanning tree can be generated from a 

rooted graph by simply deleting the geared edges from the graph shown in 

Figure 2 (a). When a geared edge is added to a spanning tree, a uniquely 

defined fundamental circuit (FC) is formed. The set of circuits formed by 

all the geared edges serves as the foundation for the circuit space. The graph 

of the Simpson gear mechanism includes a total of four FCs. The 

fundamental circuits all share one geared edge and many revolute edges. 

They are illustrated in Figure 2, subgraphs (c), (d), (e), and (f).   

The degree of a vertex is the number of edges that are incident with it. It is 

possible to categorize the vertices of a graph according to their vertex 

degrees. 

  

(a) Rooted graph (b) Spanning tree 

  

(c) FC1 (𝑣0 𝑣1 𝑣2 𝑣5) (d) FC2 (𝑣0 𝑣2 𝑣3 𝑣5) 

  

(e) FC3 (𝑣0 𝑣3 𝑣4 𝑣6) (f) FC4 (𝑣0 𝑣2 𝑣4 𝑣6) 

Figure 2. The spanning tree and the FCs of the Simpson gear mechanism. 

 If  𝑑𝑖 is the degree of vertex 𝑖, the vertex degree array can be described as 

a set of numbers that collectively reflect the degrees of the 

vertices.[𝑑0, 𝑑1, 𝑑2, … , 𝑑𝑣−1].  

                             𝐷 = [𝑑0, 𝑑1, 𝑑2,… , 𝑑𝑣−1]                                  (2) 

For example, the vertex degree array for the rooted graph shown in Figure 

2 (a) is [4, 2, 3, 3, 2, 3, 3], indicating that there is one vertex of degree four, 

four vertices of degree three, and two vertices of degree two. The VDA for 

the spanning tree shown in Figure 2 (b) is [4, 1, 2, 1, 2, 1, 1], where 𝑑0 = 4, 

𝑑2 = 𝑑4 = 2, and 𝑑1 = 𝑑3 = 𝑑5 = 𝑑6 = 1. 
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By assigning a weight of two to geared edges and one to revolute edges, the 

weighted vertex degree array is produced.  

                         𝐷𝑤 = [𝑑0𝑤, 𝑑1𝑤, 𝑑2𝑤, … , 𝑑(𝑣−1)𝑤]                           (3) 

In Fig. 2 (a), for instance, edges 𝑒03, 𝑒35, and 𝑒36 are incident with vertex 

3. The three edges have respective weights of 1, 2, and 2. Therefore, the 

weighted vertex degree of vertex 3 is 2 + 1 + 2 = 5 and the array of weighted 

vertex degrees for geared graph is [4, 3, 4, 5, 2, 5, 5]. 

 

Figure 3. FC1 after being separated from the geared graph shown in 

Figure. 

  The   weighted vertex degree array for the separated FC1 is [3, 3, 2, 2], 

indicating two two-degree vertices and two three-degree vertices. 

3.  Spanning Tree Classification 

 Using the rooted graph, it is possible to differentiate explicitly the 

similarities and differences between numerous PGMs. Specifically, the 

vertices may be subdivided into many levels. The root is located at the 

ground level. First-level vertex refers to a vertex that has a direct connection 

to the root by a single revolute edge. If a vertex has two revolute edges 

connecting it to its root, it is considered to be of the second level. This may 

be repeated on subsequent levels, if applicable.  

                             

Figure 4. vertex levels. 

Graphs may be grouped into families. Graphs may be classified into 

families based on their spanning trees. Graphs from  distinct families cannot    

beisomorphic.Two graphswith different spanning trees are not isomorphic

.The vertex degree string is used to classify spanning tree. It is defined as 

an ascending sequence of numbers denoting the degree of vertices 

beginning from the ground level. In particular, the first number in the vertex 

degree string denotes the degree of the ground vertex, the second denotes 

the degree of the vertex with the highest vertex degree in the first level, and 

so on. For example, the spanning tree shown in Fig. 4 (b) has a vertex 

degree string of 4221111. 

4. Matrix Representation 

 In order to facilitate computer programming, the graph of a PGM is 

expressed as a matrix.  

The vertex-circuit matrix, 𝐶𝑣, is defined as : 

𝐶𝑣 =

[
 
 
 
 

  𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑙   
 𝑐1,1 𝑐1,2 ⋯ 𝑐1,𝑙

𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑐2,1 𝑐2,2 ⋯ 𝑐2,𝑙

 ⋮ ⋮ ⋮ ⋮
 𝑐𝑣,1 𝑐𝑣,2 ⋯ 𝑐𝑣,𝑙]

 
 
 
 

                               (4) 

Where: 

𝐶𝑣(𝑣, 𝑙) = {
1    𝑖𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑖𝑠 𝑎 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑙,

 
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

If 𝑒 is the number of edges in a rooted graph, 𝑣 the number of vertices, 

then 𝐶𝑣 is a 𝑣 × 𝑒𝑔 matrix, because the number of fundamental circuits is 

𝑒𝑔, each fundamental circuit is produced by one geared edge. 

As illustrated in Figure 2 (a), the fundamental circuits are : FC1 

(𝑣0 𝑣1 𝑣2 𝑣5),  FC2 (𝑣0 𝑣2 𝑣3 𝑣5), FC3 (𝑣0 𝑣3 𝑣4 𝑣6), and FC4 (𝑣0 𝑣2 𝑣4 𝑣6). 

Therefore the 𝐶𝑣 matrix is :  

               𝐶𝑣 =

[
 
 
 
 
 
 
 

 𝑐1 𝑐2 𝑐3 𝑐4

𝑣0 1 1 1 1
𝑣1 1 0 0 0
𝑣2 1 1 0 1
𝑣3 0 1 1 0
𝑣4 0 0 1 1
𝑣5 1 1 0 0
𝑣6 0 0 1 1 ]

 
 
 
 
 
 
 

                                        (5) 

The weighted vertex-circuit matrix, [𝐶𝑣]𝑤, can be obtained from the 𝐶𝑣 

matrix by giving each vertex its fundamental circuit weight. We obtain     

          [𝐶𝑣]𝑤 =

[
 
 
 
 
 
 
 

 𝑐1 𝑐2 𝑐3 𝑐4

𝑣0 2 2 2 2
𝑣1 3 0 0 0
𝑣2 2 2 0 3
𝑣3 0 3 3 0
𝑣4 0 0 2 2
𝑣5 3 3 0 0
𝑣6 0 0 3 3 ]

 
 
 
 
 
 
 

                                        (6) 

5. Detection of Isomorphism 

The majority of earlier approaches for establishing structural isomorphism 

rely on incidence matrices. Nonetheless, the labeling of links affects the 

form of the incidence matrix. Relabeling the vertices of Figure 2 (a), for 

instance, yields the graph illustrated in Figure 5. 

 

Figure 5. The Simpson gear train graph with relabeled vertices. 

 The graphs in Figs. 2(a) and 5 show identical gear trains, but their 

incidence matrices are different owing to vertex labeling. However, the 

weighted vertex degree string of the graph is not affected by labeling of the 

vertices. Fig. 6 (a) and (b) show different gear trains because of their 

spanning trees.  

Ground level 

First-level 

Second-level 
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(a)  𝑉𝐷𝐴 = [4333322] (b) 𝑉𝐷𝐴 = [4333322] 

  
(c) 𝑉𝐷𝐴 = [4221111] (d) 𝑉𝐷𝐴 = [4311111] 

Figure 6. Isomorphic identification by the vertex degree strings of 

spanning trees. 

 The vertex degree string (VDS) for the spanning tree in Fig. 6 (c) is 

4221111, whereas it is 4311111 for the tree in Fig. 6 (d). Since 𝑉𝐷𝑆𝑐 ≠

𝑉𝐷𝑆𝑑 , the two graphs are not isomorphic. Isomorphism cannot exist 

between rooted graphs with distinct spanning trees (vertex degree strings). 

The first step in identifying isomorphism is to classify graphs depending on 

their VDSs. Isomorphism is not possible in graphs with different VDSs. 

The required condition for testing graph isomorphism is provided by the 

VDSs of spanning trees. When there is no one-to-one correspondence 

between the vertices of two graphs, we say that they are not isomorphic, 

and we test this by comparing their correspondence.                                                                                                                                

Therefore, the adjacency features of graphs allow for the identification of 

structural isomorphism both graphically and numerically. The 

characteristics of a graph's adjacencies are established by 

1.the spanning tree embedded in the graph 

2.the relative position of the fundamental circuits in the graph. 

 

 This can be done by multiplying the weighted vertex degree array 𝐷𝑤 by 

the weighted vertex-circuit matrix, [𝐶𝑣]𝑤 . This produces one solution 

called the fundamental circuit assortment array (FCAA). 

𝐹𝐶𝐴𝐴 = 𝐷𝑤  [𝐶𝑣]𝑤                                             (7) 

 Regardless of vertex labeling of the geared graph shown in Fig. 2 (a), 

similar FCAAs are generated. This reduces the structural isomorphism test 

to a comparison of the FCAAs of the two graphs under consideration. From 

Eq. (7), the FCAA for the graph shown in Figure 2 (a) is : 

𝐹𝐶𝐴𝐴 = [4, 3, 4, 5, 2, 5, 5]

[
 
 
 
 
 
 
2 2 2 2
3 0 0 0
2 2 0 3
0 3 3 0
0 0 2 2
3 3 0 0
0 0 3 3]

 
 
 
 
 
 

= [

40
46
42
39

]                      (8) 

Arrange the FCAA in a descending order of circuit degrees to obtain the 

circuit degree string. There are 4 circuit degrees in the FCAA, namely 40, 

46, 42, and 39. By putting these degrees in order, we get a circuit degree 

string of 46424039. It can be written in sequence with the vertex degree 

string of the spanning tree to obtain the isomorphic identification number 

(IIN) 

IIN = [422111146424039]                                         (9) 

From Eq. (7), the FCAA for the graph shown in Figure 5 is : 

𝐹𝐶𝐴𝐴∗ = [4, 5, 2, 3, 4, 5, 5]

[
 
 
 
 
 
 
2 2 2 2
3 0 3 0
0 2 2 0
0 0 0 3
2 3 0 2
0 3 3 0
3 0 0 3]

 
 
 
 
 
 

= [

46
39
42
40

]                       (10) 

The isomorphic identification number is  

𝐼𝐼𝑁∗ = [422111146424039]                                       (11) 

Since 𝐼𝐼𝑁 = 𝐼𝐼𝑁∗, the two graphs are isomorphic.  

6. Algorithm  

Using spanning trees and the fundamental circuits of kinematic chains, this 

work presents a method for isomorphic identification, which is described in 

detail below. 

1.Determine the degree of each vertex in the spanning tree, then sort the 

vertices in decreasing order of vertex degree, starting at the first level. 

2.Determine whether the two graphs are isomorphic by comparing the 

VDSs of their spanning trees. If they are identical, continue to step 2. 

3.Renumber the vertices according to the vertex degrees of the spanning 

tree. 

4.Assign weights to the edges of the graph, and then locate the weighted 

vertex degree array (WVDA). 

5.Calculate the fundamental circuit assortment array (FCAA). 

6.Arrange the FCAA in decreasing order of circuit degrees. 

7.Write the circuit degree string in sequence with the vertex degree string 

of the spanning tree to obtain the isomorphic identification number. 

8.For two graphs to be isomorphic, their isomorphic identification numbers 

must be the same. 

7. Validation and Discussion 

7.1  Case study 1 

 Figure 7 depicts the rooted graphs of two 3-DOF, 8-link PGTs. Both are 

discussed in references [14 and 24]. 

  

(a) (b) 

Figure 7. Two 8-link 3-DOF PGTs 
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 The vertex degree string for both of the two graphs in Fig. 7 is [3322111. 

Therefore, it appears likely that they are isomorphic. It should be 

emphasized that the vertex degree string is a required but not sufficient 

requirement for isomorphism. The weighted vertex degree arrays of the two 

graphs shown in Fig. 7 are (𝐷𝑤)𝑎 = [3 5 6 4 3 3 3 3]  and                                 

(𝐷𝑤)𝑏 = [3 5 6 4 3 3 3 3].  

From Eq. (7), the fundamental circuit assortment array (FCAA) for Fig. 7 

(a) is 

(𝐹𝐶𝐴𝐴)𝑎 = [3 5 6 4 3 3 3 3]

[
 
 
 
 
 
 
 
2 2 2 2
2 2 3 0
3 3 0 2
0 0 2 3
3 0 0 0
0 0 0 3
0 3 0 0
0 0 3 0]

 
 
 
 
 
 
 

= [

43
43
38
39

]                  (12) 

Therefore, the isomorphic identification number is 

(𝐼𝐼𝑁)𝑎 = [3322111143433938]                             (13) 

For Fig. 7 (b), the FCAA is 

(𝐹𝐶𝐴𝐴)𝑎 = [3 5 6 4 3 3 3 3]

[
 
 
 
 
 
 
 
2 2 2 2
2 2 0 2
3 3 3 0
0 0 2 3
3 0 0 0
0 3 0 0
0 0 0 3
0 0 3 0]

 
 
 
 
 
 
 

= [

43
43
41
37

]                     (14) 

Therefore, the isomorphic identification number is 

(𝐼𝐼𝑁)𝑏 = [3322111143434137]                                (15) 

The PGTs depicted in Fig. 7 are non-isomorphic because (𝐼𝐼𝑁)𝑎 ≠ (𝐼𝐼𝑁)𝑏. 

References [14 and 24] confirms this finding. 

7.2  Case study 2 

  Figure 8 depicts four different graphs, each of which have the same 

spanning tree VDA [3 3 2 2 1 1 1 1]. However, isomorphic 

possibilities exist, as will be shown in the following explanation. 

  

(a) (𝐼𝐼𝑁)𝑎 =

3322111143433938 

(b) (𝐼𝐼𝑁)𝑏 =

3322111143433938 

  

(c) (𝐼𝐼𝑁)𝑐 =

3322111143424137 

(d) (𝐼𝐼𝑁)𝑑 =

3322111143424137 

Figure 8. Graphs sharing the same spanning tree VDA. 

 The isomorphic identification numbers for the four graphs shown in Fig. 8 

are         (𝐼𝐼𝑁)𝑎 = 3322111143433938,  (𝐼𝐼𝑁)𝑏 = 3322111143433938, 

(𝐼𝐼𝑁)𝑐 = 3322111143424137 ,  and (𝐼𝐼𝑁)𝑑 = 3322111143424137 , 

respectively. (𝐼𝐼𝑁)𝑎 = (𝐼𝐼𝑁)𝑏 , and (𝐼𝐼𝑁)𝑐 = (𝐼𝐼𝑁)𝑑 . Consequently, the 

graphs in Figures 8 (a) and (b) are isomorphic. Also, those shown in (c) and 

(d) are isomorphic. These findings are supported by references [14, 24]. 

The new isomorphic detection approach is used to a 2-DOF PGM atlas with 

six links from the literature. Appendix A shows the geared graphs and the 

isomorphic identification numbers of the 6-link 2-DOF PGMs. The 

detection results match the those reported by Refs. [25-27] and each graph 

has a unique isomorphic identification number.  

7.3  Case study 3 

 Figure 9 depicts the graphs of three 2-DOF planetary geared cam 

mechanisms with 5 links. The vertex degree string for each of the three 

graphs is 32111.  By assigning a weight of one to revolute edges (thin lines), 

two to geared edges (dotted lines) and three to cam edges (bold lines), the 

weighted vertex degree arrays of the three graphs are (𝐷𝑤)𝑎 = [3 5 4 3 3], 

(𝐷𝑤)𝑏 = [3 2 4 6 3], and (𝐷𝑤)𝑐 = [3 2 6 4 3]. 

   

(a) (b) (c) 

Figure 9. Graphs of three 2-DOF PGCMs with 5 links. 

The vertex-circuit matrix for Fig. 9 (a) is,  

[𝐶𝑣]𝑤𝑎 =

[
 
 
 
 
 

 𝑐1 𝑐2

𝑣1 2 2
𝑣2 2 4
𝑣3 0 4
𝑣4 3 0
𝑣5 3 0 ]

 
 
 
 
 

                                      (16) 

Therefore, From Eq. (7), the fundamental circuit assortment array (FCAA) 

is 
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(𝐹𝐶𝐴𝐴)𝑎 = [3 5 4 3 3]

[
 
 
 
 
2 2
2 4
0 4
3 0
3 0]

 
 
 
 

= [
34
42

]                         (17) 

The isomorphic identification number is 

(𝐼𝐼𝑁)𝑎 = 321114234                                      (18) 

Similarly, (𝐼𝐼𝑁)𝑏 = (𝐼𝐼𝑁)𝑐 = 321114637 . Consequently, the graphs 

shown in Figures 9 (b) and (c) are isomorphic. Appendix B  shows the 

graphs of 5-link 2-DOF planetary geared cam mechanisms and their 

corresponding isomorphic identification numbers. Each graph has a unique 

isomorphic identification number. Isomorphic graphs (not shown) have the 

same value of isomorphic identification number. 

8. Application of the new method to other graph 

representations 

  Figure 10 depicts the graphs of two 1-DOF PGTs with 8 links as 

represented by reference [14]. There are no hollow vertices (roots) in these 

graphs  

  

(a) (b) 

Figure 10.   Graphs of two 1-DOF PGTs with 8 links from reference [14]. 

The vertex degree string for both of the two graphs is 52111111. The 

weighted vertex degree arrays of the two graphs are (𝐷𝑤)𝑎 =

[3 5 3 5 7 5 7 3]  and (𝐷𝑤)𝑏 = [5 3 3 5 7 7 3 5] . The vertex-circuit 

matrices are,  

[𝐶𝑣]𝑤𝑎 =

[
 
 
 
 
 
 
 
 

 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6

𝑣1 3 0 0 0 0 0
𝑣2 0 0 0 0 3 3
𝑣3 0 0 0 0 3 0
𝑣4 0 0 0 3 2 2
𝑣5 0 3 3 3 0 0
𝑣6 3 3 0 0 0 0
𝑣7 2 2 2 2 0 3
𝑣8 0 0 3 0 0 0 ]

 
 
 
 
 
 
 
 

                    (19) 

and 

[𝐶𝑣]𝑤𝑏 =

[
 
 
 
 
 
 
 
 

 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6

𝑣1 3 3 0 0 0 0
𝑣2 0 0 3 0 0 0
𝑣3 3 0 0 0 0 0
𝑣4 2 2 0 3 0 0
𝑣5 0 0 3 3 3 0
𝑣6 0 3 2 2 2 2
𝑣7 0 0 0 0 0 3
𝑣8 0 0 0 0 3 3 ]

 
 
 
 
 
 
 
 

                    (20) 

Therefore, the fundamental circuit assortment array (FCAA) for Fig. 10 (a) 

is 

(𝐹𝐶𝐴𝐴)𝑎 = [3 5 3 5 7 5 7 3]

[
 
 
 
 
 
 
 
3 0 0 0 0 0
0 0 0 0 3 3
0 0 0 0 3 0
0 0 0 3 2 2
0 3 3 3 0 0
3 3 0 0 0 0
2 2 2 2 0 3
0 0 3 0 0 0]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
38
50
44
50
34
46]

 
 
 
 
 

           (21) 

The isomorphic identification number is 

                      (𝐼𝐼𝑁)𝑎 = 52111111505046443834                        (22) 

The fundamental circuit assortment array (FCAA) for Fig. 10 (b) is 

(𝐹𝐶𝐴𝐴)𝑏 = [5 3 3 5 7 7 3 5]

[
 
 
 
 
 
 
 
3 3 0 0 0 0
0 0 3 0 0 0
3 0 0 0 0 0
2 2 0 3 0 0
0 0 3 3 3 0
0 3 2 2 2 2
0 0 0 0 0 3
0 0 0 0 3 3]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
34
46
44
50
50
38]

 
 
 
 
 

          (23) 

The isomorphic identification number is 

                     (𝐼𝐼𝑁)𝑏 = 52111111505046443834                              (24) 

The graphs in Figure 9 are isomorphic because (𝐼𝐼𝑁)𝑎 = (𝐼𝐼𝑁)𝑏. Yang et 

al. came at the same result. [14] . 

9. Conclusions 

 In this paper, an algebraic method for identifying isomorphism in PGMs 

and PGCMs is presented, using spanning trees and the fundamental circuits 

of kinematic chains. The first step in identifying isomorphism is to classify 

graphs depending on their vertex degree strings. The vertex degree strings 

of spanning trees give the required condition for checking graph 

isomorphism. The vertices of two graphs are not isomorphic if their vertex 

degree strings are not identical. The main advantage of classifying 

kinematic chains according to their vertex degree strings is that it 

automatically removes the large majority of isomorphic topologies. This 

saves time and effort compared to other approaches. In the second step, a 

unique identifier capable of detecting isomorphism is developed and the 

task of evaluating structural isomorphism changes into a problem involving 

the examination of the isomorphic numbers of the two PGTs in question. 

The isomorphic identifier is calculated from the vertex degree array and the 

circuit matrix through matrix operations. Each graph has a unique 

isomorphic identification number. There is agreement between the 

detection results and the findings given in Refs. [25-27]. Compact 

notations, outstanding accuracy, and simplicity of usage are the key benefits 

of this system. Additionally, it is mathematically simple and can be applied 

to every type of graph representation.  

Authors’ contribution 

 

All authors contributed equally to the preparation of this article. 

 

Declaration of competing interest 

 

The authors declare no conflicts of interest. 

 

Funding source 

 
This study didn’t receive any specific funds. 



 

8 SAJAD ABDALI ET AL. /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES   00 (0000) 000–000 

 

 

   REFERENCES 

                                                                                                                                                                                                                

[1] Buchsbaum, F., and Freudenstein, F., 1970, “Synthesis of Kinematic 

Structure of Geared Kinematic Chains and other Mechanisms,” J. Mech., 

5(3), pp. 357-392.doi.org/10.1016/0022-2569(70)90068-6 

[2] Yang, W. J., Ding, H. F., Zi, B., and Zhang, D., 2018, “New Graph 

Representation for Planetary Gear Trains,” ASME J. Mech. Des., 140 (1), 

p. 012303.doi.org/10.1016/j.aej.2021.09.036 

[3] Kamesh,V. V., Rao, K. M., and Rao, A. B. S., 2017, “An Innovative 

Approach to Detect Isomorphism in Planar and Geared Kinematic Chains 

Using Graph Theory,” ASME J. Mech. Des., 139(12), 

p.122301.doi.org/10.1177/0954406221998399 

[4] M. Du , L. Yang , A basis for the computer-aided design of the topological 

structure of planetary gear trains, Mech. Mach. Theory 145 (2020) 103690 

.DOI:10.1016/j.mechmachtheory.2019.103690 

[5] V.R. Shanmukhasundaram, Y.V.D. Rao, S.P. Regalla, Review of structural 

synthesis algorithms for epicyclic gear trains. In: D. Sen, S. Mohan, G. 

Ananthasuresh (eds), Mechanism and Machine Science. Lecture Notes in 

Mechanical Engineering. Springer, Singapore, 2021, 

https://doi.org/10.1007/ 978- 981- 15- 4477- 4 _ 25 . 

[6] Tsai LW(2000) Mechanism design: enumeration of kinematic structures 

according to function. CRC Press, Florida, USA. 

[7] Kamesh, Vinjamuri Venkata; Mallikarjuna Rao, Kuchibhotla; Srinivasa Rao, 

Annambhotla Balaji (2017). Topological Synthesis of Epicyclic Gear 

Trains Using Vertex Incidence Polynomial. Journal of Mechanical Design, 

139(6), 062304–. doi:10.1115/1.4036306. doi.org/10.1115/1.4036306 

[8] Freudenstein, F., An application of Boolean algebra to the motion of 

epicyclic drives, ASME J. Eng. Ind. 93 (1), 1971, 176–182. 

doi.org/10.1115/1.3427871 

[9] Yang, W.J. , Ding, H.F., Kecskeméthy, A., Automatic Structural Synthesis 

of Non-Fractionated 2-DOF Planetary Gear Trains, Mech. 

Mach.Theory155,2021,104125-1-27. 

DOI:10.1016/j.mechmachtheory.2020.104125 

[10] Shanmukhasundaram, V.R., Rao, Y.V.D.  , Regalla, S.P., Enumeration of 

displacement graphs of epicyclic gear train from a given rotation graph 

using concept of building of kinematic units, Mech. Mach. Theory 134, 

2019, 393–424. doi.org/10.1016/j.mechmachtheory.2019.01.005 

[11] Hsu, C. H., Lam, K. T., and Yin, Y. L ., Automatic Synthesis of 

Displacement Graphs for Planetary Gear Trains,” Mathl. Comput. 

Modelling, 19(11), 1994, 67-81. 

       doi /10.22055/JACM.2022.41255.3721 

[12] Ravisankar. R., Mruthyunjaya. T. S., 1985, “Computerized synthesis of the 

structure of geared kinematic chains”, Mechanism and Machine Theory, 20, 

pp. 367-387. DOI: 10.1016/0094-114X (85)90042-4 

[13] Rao, Y. V. D., Rao, A. C., Generation of Epicyclic Gear Trains of One 

Degree of Freedom,” ASME J. Mech. Des., 130(5), (2008) pp. 052604. 

doi.org/10.1115/1.2890107 

 [14] Yang, W. and Ding, H.: The Perimeter Loop-Based Method for the 

Automatic Isomorphism Detection in Planetary Gear Trains, J. Mech. 

Design, 140, 1–10, 2018. doi.org/10.1115/1.4041572 

[15] Yang, W. and Ding, H.: Automatic detection of degenerate planetary gear 

trains with different degree of freedoms, Appl. Math. Model., 64, 320–332, 

2018. DOI:10.1016/j.apm.2018.07.038 

[16] Yang, W. and Ding, H.: The Complete Set of One- Degree-of- Freedom 

Planetary Gear Trains With Up to Nine Links, J. Mech. Design, 141, 1–22, 

2019. doi.org/10.1115/1.4041482 

[17] Rai, R. K. and Punjabi, S.: A new algorithm of links labelling for the 

isomorphism detection of various kinematic chains using binary code, 

Mech. Mach. Theory, 131, 1–32, 2019. 

DOI:10.1016/j.mechmachtheory.2018.09.010 

[18] Yi H J, Wang J P, Hu Y L and Yang P 2021 Mechanism isomorphism 

identification based on artificial fish swarm algorithm. P. I. Mech. Eng. C-

J. Mech. 235(21): 5421–5433. DOI:10.1177/0954406220977560 

[19] Zou Y H and He P 2016 An algorithm for identifying the isomorphism of 

planar multiple joint and gear train kinematic chains. Math. Probl. Eng. 

2016: 5310582. doi.org/10.1155/2016/5310582 

[20] Huang P, Liu T T, Ding H F and Zhao Y Q 2021 Isomorphism identification 

algorithm and database generation for planar 2–6 DOFs fractionated 

kinematic chains combined by two or three non-fractionated kinematic 

chains. Mech. Mach. Theory 166: 104520. doi.org/10.1007/s12046-022-

01918-y 

 [21] He L Y, Liu F X, Sun L and Wu C Y 2019 Isomorphic identification for 

kinematic chains using variable high-order adjacency link values. J. Mech. 

Sci. Technol. 33(10): 4899–4907. https://doi.org/10.1007/s12206-019-

0930-9 

 

[22] Rai R K and Punjabi S 2018 Kinematic chains isomorphism identification 

using link connectivity number and entropy neglecting tolerance and 

clearance. Mech. Mach. Theory 123: 40–65. 

doi.org/10.1177/16878132221131193 

[23] Kamesh V V, Rao K M and Rao A B S 2017 An innovative approach to 

detect isomorphism in planar and geared kinematic chains using graph 

theory. J. Mech. Des. 139(12): 122301. DOI:10.1115/1.4037628 

[24] Hsu, C. H., 1994, “Displacement Isomorphism of Planetary Gear Trains,” 

Mech. Mach. Theory, 29(4), pp. 513-523. doi.org/10.1016/0094-

114X(94)90091-4 

[25] Hsu, C. H., and Hsu, J. J., 1997, “An Efficient Methodology for the 

Structural Synthesis of Geared Kinematic Chains,” Mech. Mach. Theory, 

32(8), pp. 957-973. doi.org/10.1177/0954406215583321 

[26] Prasad Raju Pathapati, V. V. N. R., and Rao, A. C., “A New Technique 

Based on Loops to Investigate Displacement Isomorphism in Planetary 

Gear Trains,” ASME J. Mech. Des., 2002, 124(4), pp. 662-

675.  doi: https://doi.org/10.1115/1.1519276 

[27] Hind A. Nafeh, Essam L. Esmail, Sajad H. Abdali, Automatic Structural 

Synthesis of Planetary Geared Mechanisms using Graph Theory, J. Appl. 

Comput. Mech., Volume 9, Issue 2, April 2023,  Pages 384-403. 

10.22055/JACM.2022.41255.3721 

 

Appendix A 

Table A  The graphs of the 6-link 2-DOF PGMs and their correspondingisomorphic 

identification numbers. The IDs are produced by giving revolute edges (shown in red) 

a weight of one and geared edges (shown in black) a weight of two. 
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Table B  The graphs of the 5-link 2-DOF planetary geared cam mechanisms and their 

corresponding isomorphic identification numbers. In order to generate the IDs, 

revolute edges (thin lines) are given a value of one, geared edges (dotted lines) are 

given a value of two, and cam edges (bold lines) are given a value of three. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graphs of the 6-link 2-DOF  planetary gear mechanisms 

 

 

 

 

421111424242 331111423636 322111403837 322111413835 

 
 

 
 

331111363636 331111424236 321121414133 241111424242 

 

 

 

 

232111414140 241111423632 232111413625 222211403935 

 

 

 

 

23121413832 241111383632 231211393732 231211443834 

 

 
 

 

231211423835 241111423838 221211403737 231211413735 

 

 
 

 

221311373634 221221393635 231211403837  


