AL-QADISIYAH JOURNAL FOR ENGINEERING SciEnces 00 (0000) 000-000

N
ALOADISIYA
LSl JOURNNLFOR
N encineering.
SCIENCES

Contents lists available at http:/qu.edu.iq

Toleauio Betereed Joural Ovantey

iraed by Golloge ot

Eugivceing Uainerdiy o AGodlsigo
o

Al-Qadisiyah Journal for Engineering Sciences

Journal homepage: https://gjes.qu.edu.iq

An improved throttling algorithm for fog computing networks wij
additional management layer .\

Omar Anwer Nafea* and Turkan Ahmed Khaleel

Department of Computer Engineering, College of Engineering, Mosul University, Mosul, Iraq Iraq

ARTICLEINFO ABSTRACT

Article history:

Received 00 December 0000

Received in revised form 00 January 0000
Accepted 00 February 0000

An emerging networking technique called fi uting extends cloud computing capabilities to the edge

and implement a fog comp!
which represents the monitoki

nt to simulate the behavior of a multi-user healthcare application,
erly care homes in Mosul city. Several algorithms were employed to

Keywords

Fog Computing
Load balancing

cing inside fog computing networks. These algorithms are Random,
d Throttled algorithm, which is modified by adding an extra management

OMNIT++ for fog computing networks. The response time results obtained from
Response time g this modified method were superior to those of the random algorithm and closely resembled
Throttled algorithm results of the round-robin algorithm. In case QoS1 with 25 clients, the result was

ngtworks.

© 2024 University of Al-Qadisiyah. All rights reserved.

1. Introduction

For the majority of peaple, “fogging" or “fog computing" is a relatively
new idea that Ciscogifitrodu 2014. A relationship exists between fog
and cloud computifig; just/as fog is typically found in areas closer to the

to be transported to centralized data centers are two key tenets of fog
computing, which promises to address the issues of latency, bandwidth,
security, and privacy that emerge with traditional cloud computing. In fog

ground is this the case in technology. It is possible to computing, several distributed, decentralized, and heterogonous devices are
bring cl ies down to the ground level using fog computing placed closer to end devices, sensors, and actuators at the edge of the
because itfis’closer to end users [1]. The term "fog computing" refers to a network. These edge devices are interconnected and communicate through

distributed \eomputing paradigm that places computation and data storage
closer to end users and devices. The concept of cloud computing is
extended to the edge of the network by fog computing. Processing and
analyzing data closer to where it is created and eliminating the need for data

the fog layer, which is responsible for providing services such as
processing, data caching, and analysis. Computing in the fog provides real-
time and context-aware decision-making and effective use of network

* Corresponding author.
E-mail address: omar.21enp5@student.uomosul.edu.iq (Omar Anwer Nafea)

https://doi.org/10.30772/qjes.2024.146104.1089

2411-7773/© 2024 University of Al-Qadisiyah. All rights reserved. This work is licensed under a Creative Commons Attribution 4.0 International License.

http://qu.edu.iq/
https://qjes.qu.edu.iq/
https://doi.org/10.30772/qjes.2024.146104.1089
https://doi.org/10.30772/qjes.2024.146104.1089
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4047-8100

2 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 00 (0000) 000-000

Nomenclature:

FogNetSim Fog Network Simulator Msg Message

Ini initialization file MTH Modified Throttled Algorithm
10T Internet of Thing N Number of Client

LB Load Balance NML Network Management Layer
LC Least Connection PPP Point to Point

LPCF Least Processing Cost First QoS Quality of Service

MIPS Million Instruction Per sconed ToS Type of Service

MQTT Message Queuing Telemetry Transport WRR Weighted Round Robin

resources. The Internet of Things (loT) is greatly aided by fog computing,
which offers high-quality services with fast response times and a scalable,
flexible platform for managing the enormous volumes of data produced by
10T devices. It is a crucial technology for edge computing as well, which
processes data locally on edge devices like robots, drones, and smartphones
[2][3]. The fog computing architecture is a hierarchy of computing
resources arranged into layers, each performing specific functions. This fog
computing architecture is designed to solve the limitations of cloud
computing, like latency, bandwidth and security issue. By bringing
computing resources closer to the edge of network, fog computing can
improve the performance, reliability, and security of edge devices and
applications and enable new use cases in areas such as smart cities,
healthcare, and industrial loT. Figure 1 shows the fog computing
architecture, which is usually composed of three layers: the Cloud
Computing layer at the top, the Fog Computing layer in the center, and the
End Device layer at the bottom [4][5] [6].

Cloud
e
\\.
B
|
-
_

lage] [Ele=]a])
=" e ooy
= T |

Fog Nodes

End
Devices
3y
|
.
2 %N

Figure 1. Fog Computing Architecture [6].

processing, and connecting to a network is referred to as a Fog Computing
device which includes the Fog nodes that are located closer to the network's
edge than cloud data centers and are responsible for providing services such
as data analytics, storage, and communication. These Fog nodes can be
deployed in various locations, including on-premises, in public spaces, or
in vehicles, providing a range of services to end-users in real-time [8].

End Devices, or Data producer layer: This layer is the ¢ hg end
devices, such as sensors, actuators, and mobile devices. ts of edge
devices that collect and transmit data to the fo@ayer

An extension of cloud computing's services is Internet of
Things (1oT) layer by the fog computing | f the most

significant of these services will be

classified into three main categori

services [9]

o Storage: The sensor has thefca
Given the rate at whichgdata

produce large volumes of data.
generated with increasing of using loT
f 10T gadgets at the 10T layer is often

limited computing power of loT-layer devices has led

he development of distant processing methods. Enhancing
requirements, ensuring energy efficiency, enabling local
roeessing, and achieving a faster response time are the motivation
ehind fog layer treatment. As a result, processing tasks can be moved

from the cloud computing to the fog computing layer [11].

e Communication: wireless nodes play a crucial role in facilitating
communication inside the Internet of Things (loT), due to the limited
resources in the IoT layer, the wireless protocols are specifically
designed to operate with minimal energy use, limited bandwidth
transmission, and extended coverage [12].

The paper's contribution is adding a network management layer, which will
help researchers in the future by adding several other parameters and
injecting their own load balancing algorithms.

2. Review of the Literature

This section entails a comprehensive examination of the most recent and
advanced studies and related works in the field. This review is structured
into two sections. The first section focuses on simulators and frameworks
for fog computing, fog computing's applications in healthcare is covered in
the second section, which also looks at load balancing techniques in this
field.

2.1. Fog Computing Simulator and Frameworks

Nowadays, fog computing is a modern environment where many fog
computing technologies are used to support and construct applications in a
wide range of fields, including healthcare, smart grids, smart homes, smart
buildings, intelligent transportation systems, etc. [13]. These applications
and technologies frequently profoundly effect on people's lives. Still,

OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 00 (0000) 000-000 3

further consideration is needed because not all of these applications have
quite reached a satisfactory degree of maturity. Therefore, the use of
simulators was mandated. There are various fog computing environment
simulation tools with varying characteristics and modes of operation. We
will examine a few of these simulators in this paragraph:

An Edge-Fog cloud simulator was developed by (N. Mohan, et al., 2016).
It is built of two layers: the edge device layer and the fog device layer. The
simulator is implemented in Python. The Least Processing Cost First
(LPCF) method, which assigns jobs to potential nodes, was then developed
and incorporated by the authors. Reducing computing time and network
expenses is the aim of the assignment [14].

(A. Brogi, et al., 2017) develop a fog computing paradigm comprising
qualified deployments, fog infrastructures, 10T applications, and QoS
profiles. FogTorch is a simulator tool written in Java that lets developers
adjust the fog infrastructure. Developers can specify QoS settings
pertaining to latency and bandwidth and inform the simulator of the
requirements of their applications. There is no fee model offered by
FogTorch [15]. (H. Gupta, et al., 2017) suggested a simulator called
iFogSim built on JAVA and is used to model fog networks in loT
environments and assess the effects of resource management strategies on
latency, network congestion, energy consumption, and cost, the authors
present two case studies that represent an 10T environment and compare
different approaches to managing resources. In addition, the simulation
toolkit's scalability in terms of RAM usage and running time is validated in
a variety of settings. However, iFogSim is not perfect; in particular, it puts
too much emphasis on resource management while neglecting other critical
areas of fog computing such as infrastructure and mobility [15].

(T. Qayyum, et al, 2018) proposed the FogNetSim++ simu
framework, that gives users a wide range options for setting up a
network simulation. It is built on OMNeT++ [17], which is angopen-source
component-based C++ simulation library and framework th
used in academic settings. Mobility models, handover mg pergy
models, and Fog node scheduling algorithms can all be
FogNetSim++ [18]. The authors (Lera, et al., 2019)
Python-based simulator designed for fog \computing, ghabling the
simulation of cloud and fog environments. The S architecture enables
the incorporation of structural measures | namie’ and customizable
strategies, such as workload locatio tion module placement,
service scheduling, and path routin 2ved by utilizing complex
network theory to model th between applications,
infrastructure elements, an nnections. Following that, the
authors performed a c@mparative investigation to investigate the
convergence and effigienc ults between the highly acknowledged
simulator, iFogSim§ and thd YAFS simulator [19].

(A. W._Malik, et 1) proposed xFogSim, a framework for an
imulator (FogNetSim++) constructed with OMNET++. In
nce ycost, availability, and performance within the fog
FogSim provides multi-objective optimization assistance for
ive fog layer applications. In order to meet service and energy
needs under high load, nearby fog sites can lend resources thanks to
location-aware distributed broker node management. The outcomes
demonstrate how adaptable, scalable, lightweight, and capable the
framework is by handling a large number of user requests through the fog
federation's dynamic resource provisioning [20]. Table 1, represents a
summary of the most important simulators and frameworks mentioned in
the above-related work.

AFS, a

2.2. Fog Computing Application

Global improvements in healthcare, public health, medical research, and
technology, as well as increased awareness of personal hygiene, the
environment, and nutrition, are all responsible for the notable rise in life
expectancy that has been seen in recent decades. Due to rising life
expectancies and the high costs of providing healthcare and other well-
being services for the elderly, there is an increasing number of older people,
which is dangerous for the socioeconomic systems of ma tions (S.
Majumder, et al.,2017) [21]. Monitoring the health and well- the

continuous remote surveillance. Smart h@mes
environmental and wearable medical sensors,

technologies, and actuators. This integrated m y

technology, including powerful processor wireless communication
platforms, to provide healthcare, safety’ e ing services directly to
residents. Operating on the principlesiof the Anternet of Things, the smart
home connects all sensors al ViC thin the residence, enabling
remote monitoring of occupa ealth, environmental conditions, and

overall safety and securi

0g loT was introduced by Olivier Debauchee

geriatric monitorj
i h in the senior population and their desire to live

etal. The sig
indepen

chnologies to guarantee the best possible standard of
fo group. Preventive medical surveillance may also be
eous for another group of patients, those with life-threatening

onstrated a cloud-based health monitoring system for the fog loT that
an provide contextual data for activities of daily living. With the help of
this device, healthcare professionals may monitor the health and behavioral
changes of elderly or alone patients. Additionally, this technology allows
for the tracking of patients' rehabilitation and recovery processes [22]. In
2022 (P. Singh et al.), the authors offer a thorough analysis of several job-
scheduling techniques used in fog computing. It examines and contrasts
several task-scheduling techniques created for a fog-computing
environment to highlight their benefits and drawbacks. Finally, it offers
potential study options for other scientists working in the fog-computing
environment [23]. Beraldi et al. (2020) provide an extensive compilation of
potential research endeavors in the field of fog computing. These studies
encompass a range of areas, including heterogeneity, security, diversity,
energy consumption, response time, execution time, and load balancing.
The authors point out that many researchers in the field have largely ignored
these aspects. Hence, it is possible to enhance the effectiveness of
scheduling algorithms in the fog-computing setting by integrating different
techniques and tang into account crucial performance aspects. The study's
findings indicate that basing scheduling decisions on state information that
arrives even slightly after the service time greatly reduces the effectiveness
of load balancing. An investigation is being conducted on a threshold
probe-based technique with little fanfare to address this impact. This
technique is more desirable than the current alternative, especially in a
geographically accurate situation characterized by a greater degree of
unpredictability in the incoming load [24].

According to (V. Kashyap, et al., 2022), numerous algorithms have been
proposed that utilize LB to address the issue of unreasonable data in
network congestion. Response time, execution time, security, latency, and
bandwidth are criteria on which writers have focused in LB. The authors

4 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 00 (0000) 000-000

state that more attention needs to be paid to a few parameters in the field of
fog computing. Security is the most crucial factor because when a server is
under heavy demand, the processor's limited capacity makes it difficult for
it to respond appropriately, which might result in system failure and the loss
of user databases [25]. In 2022 by (N. R. O. Al-Rubaie et, al.) introduces
an Internet of Things (loT)-based fog computing paradigm that combines
loT and fog computing (FC). The quality checks were performed using the
FogNetSim++ add-on and OMNeT++. According to the study, the scenario
with FC is especially useful since it controls data exchange rates, delay
time, and channel availability through the use of data exchange rates.
Furthermore, learning automata are utilized to incorporate packets from
similar directions into the base fog node manager of the network. According
to the study, the proposed FC scenario is particularly useful as it applies
learning automata to add packets originating from similar directions to the
primary fog node manager of the network. It also uses data exchange rates
to control channel allocation, delay time, and throughput [26].

suggests using multiple queues. A weighted round-robin algorithm is used
to schedule these queues, allocating jobs to them based on the assigned
value of the ToS (Type of Service) bits, which are located in the IP header's
second byte. The researchers have arrived at the following four
conclusions: Primarily, fog computing frameworks facilitate the
technological work process and enable developers to experiment with their
ideas prior to their implementation in real-world scenarios. Additionally,
the use of multiple queues significantly lowers the latency that fog nodes
and users experience, which in turn reduces error rates an ket drop
rates. Furthermore, as compared to the first-come, first-senve ling
strategy, the weighted round robin yielded greaSr resulis % ular round
robin. Ultimately, accounting for every aspect will res g/framework
that produces results that are as genuine or ne
real world [27].

ound in the

A
Table 1. Different Fog Simulation and Framework Comparison f
A4
. . Network .
Simulator Year Build on . . GUI L frastructure Work on
Configuration
Establishes a resource
network, assigns tasks, and
Edge-Fog cloud 2016 Python X X Edge, fog layer] g.
sets configuration
parameters.
Cloud, fog nodes, 0S-aware deployment of
Fog Torch 2017 Java)’ MIT . g Q L ploy
and things loT applications
. Comparison of import
Fog devices, to olz ies resourt?e
iFogSim 2017 Java X N/A actuators, sensors, polagres, .
management strategies, and
and data centers
cost
Enables the use of
Ct Base stations, communication protocols and
. sensors, fog nodes, applications and includes
FogNetSim++ 2018 d N N GNU d PP)
o1 broker nodes, and pre-installed modules like
mobile devices sensors, mobile devices, fog
Pl nodes, and brokers.
s) Cloud, fog, Network design, billing
YAFS 01 Python v MIT sensors, and management, and resource
actuators allocation analysis
Enables the use of
Cit Base stations, communication protocols and
: ' sensors, fog nodes, applications and includes
xFogSim 2021 based on \/ y GNU g PRl)
broker nodes, and pre-installed modules like
OMNeT++

mobile devices sensors, mobile devices, fog

nodes, and brokers.

(D. B. Abdullah et, al., 2022) employed a fog simulation framework with a
smart agent layer established between the end-user device and a fog layer.
Rather than using a single queue at the Ethernet layer, the framework

(A.S. Kadhim et, al., 2022), the authors suggested an loT-based fog-to-
server architecture that uses distributed environments and hybrid load
balancing to address the issue of packet loss in fog and servers. The

OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 00 (0000) 000-000 5

suggested approach uses a combination of weighted round-robin and hybrid
load balancing with the least connection in fog nodes to distribute requests
to the active servers based on load and time. The first case study does not
include a load balancer; the second case study uses the least connection
(LC) algorithm as the load balancer; the third case study uses weighted
Round Robin (WRR) as the load balancing algorithm; and the fourth case
study uses a hybrid approach that combines LC and WRR implemented in
each fog node. These case studies serve as the foundation for the proposed
system. The load balancing mechanism in the proposed multilayer
architecture is effective and allows access control to be adjusted. The
findings demonstrate that the suggested solution enhanced network
performance by guaranteeing the effective processing of loT requests
originating from the loT layer by utilizing distributed fog computing
services in conjunction with a hybrid load-balancing technique [28].

3. Scheduling and Execution of Tasks

The processing of client-generated tasks starts by determining the amount
of the load to be processed and querying the load balancing function to
compute an optimal processing location (fog node or broker). so, that the
task is scheduled to the designated broker using a new publish message that
informs the designated broker about the new task, various data is kept at the
scheduling broker to be able later to combine with the data returning after
task execution and generate the proper publish message that inform
subscribers about the updated topic. This work implemented a functional
mechanism that allows for easy selection of one of multiple algorithms to
be used via configuration file (“.ini”’) to compute a suitable fog node or
broker using one of the following algorithms random, round robi
throttled.

3.1. Random Algorithm
This is a static algorithm relying on a list of available fog
generating a number between 0 and (list size -1) and that

an index to select the suitable fog broker for ta: ecufion.

3.2. Round Robin Algorithm

Round robin is also a static algorit a on a list of available fog
brokers, it uses a counter to de ne the le fog broker for task
execution incrementing the t ard, if the counter value exceeds
the list size the counter is eset.

3.3. Throttled Algorith

rithm distinguishes itself from the above-mentioned
a dynamic algorithm that uses runtime-obtained data
to decide op the best suitable fog broker for task execution. it does that by
requesting the status of all known fog brokers generating a list of returned
statuses and using the first available fog broker for task execution. The
scanning mechanism provided with the traditional implementation of the
throttled algorithm does not suit the distributed nature of the fog computing
environment, for this reason, an alternative mechanism for collecting the
status of broker nodes on the network is used. The alternative mechanism
depends on the broker nodes publishing their status periodically via a
dedicated message over the network while listening for status messages
incoming from the remote broker node. This alternative mechanism will be

algorith

referred to within the scope of this work as the Network Management
Layer.

4. Network Management Layer
The traditional implementation of the throttled algorithm divides the

executing devices into two groups, that is, available or busy devices,
respectively, where the available segment contains nodes that can be used

to execute an incoming task while the busy segment contains s that are
excluded from task assignment due to overload. t ditional
implementation scans the network machines, classifigs™ the
available and free segments, and then selects th@first achine for
task execution. balancing means that it makes thgyless node take

additional loads and makes the highly loa 0 0
accepting additional loads. An incomin must” be scheduled for
execution even if all executing broke| es are\0Verloaded. this is worse
case event that incurs the most deldy. As mentioned at the end of the
section, each broker listens to st essages as shown in Figure 2,
that are periodically publi oKer nodes in the fog network. these

about the broker's maximum load
AD], and time of status generation [TS].
d by the Wireshark network analysis tool
rmore, these messages help the receiving node
ong the path connecting the sending and receiving
messages are published using the MQTT protocol and
ML_" + broker node name prefix, for example,

ent load status. The information obtained from the status message as
hown above was used by the other receiving broker nodes to compile and
generate a list of broker nodes that is sorted, depending on the goal of the
simulation, from most suitable to least suitable broker nodes for task
execution. The sorting of the broker nodes list is implemented as an
extendable function to allow for finer simulation control. for this work, the
[sort_by least_delay] is used. other possible sorting criteria are possible,
for example [sort by least_load], [sort by max_capacity], or a user-
defined sorting function. As the sorting logic is implemented in C++ code,
modifying the sorting function and/or its parameters requires recompiling
and linking the simulation application. As with the traditional
implementation of the throttled algorithm, querying the target machine's
status, the Network Management Layer incurs a slight overhead on the
network transport medium to disseminate the broker node status over the
network. The publishing of Network Management Layer messages can be
turned on or off in the scenario configuration file (“.ini” file) via the
configuration parameter [enableNML]. for the scope of this work, the
Network Management Layer messages are published using MQTT QoS 0
mode, the overhead the Network Management Layer message incurs can be
determined using the following equation 1:

N messages = number of broker nodes * number of messages sent per
second (1)

The number of VM status request messages sent by the traditional
implementation can be determined by equation 2 (this is known as
overhead):

N messages = number of nodes * number of requests (2)

After deciding on the best candidate broker to handle an incoming task
(which might very well be the scheduling broker node itself), the task is
forwarded to the chosen handling broker. in case the chosen handling

6 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 00 (0000) 000-000

broker is the same host, the task is simply queued for execution. if the
chosen handling broker is a remote broker node the scheduling broker node
uses a dedicated MQTT connection to forward the task to the remote broker
node. The Network Management layer fulfills two key roles: the first is a
storage for the collected/received status of broker nodes on the network and
the second alleviates the coding effort needed to generate broker node's
status requests and process incoming responses, the implementation of
Network Management layer depends on OMNET++ scheduling API to
provide timing events and INET framework API to create data storage
structure. in reality, the overhead of scheduling a task to the broker node is
nonzero, but for simplicity, the current implementation of the network
management layer assumes it to be zero, as it is an order of magnitude
smaller than the delays incurred by the network and task queuing. Figure 4
illustrates the modified throttled algorithm used in this work.

Load

MIPS MQTT msg
TS with

} NML informations

Brokers

Sender Broker

-

5. Network Management Layer (NML) Data Flow

NML messages are sent to known broker nodes directly over an MQTT
TCP connection, this completely avoids the need for intermediate
processing by other fog Brokers in the network hierarchy, at the cost of a
slight increase in load on links, switches, routers, the traffic generated by
the NML is periodic and capturing the status of each node at generation
time. The traffic is dynamic in the sense it changes according to,the status
of the broker node, once a request is received, the scheduli
determines which handling broker in the fog network is ayai
suited for handling the request and then forwa@ the reg

MQTT msg
with
NML informations

Brokerid | Load | MIPS | TS

Reciver Broker

Figure 2. Broker Status Message.

OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 00 (0000) 000-000

— O
dmJ® = R
‘[I lApp\v‘ a display filter ... <Ctrl-/> = '] +
No. Time Source Destination Protoc Lengt Info
' 193 2.035005 10.60.0.6 10.0.08.1.. MQTT 122 Publish Message [NML_Broker_loc1@]
I 194 2.0835863
3 | 195 2.0835069) M Wireshark - Packet 193 . Network_r2r_1.Broker_loc10.pcapRecorder[0].eth.pcap = m] X
LR 196 2.835075
! 197 2.035880| > Frame 193: 122 bytes on wire (976 bits), 122 bytes captured (976 bits)
1‘ 198 2.040072 > Ethernet II, Src: ©a:aa:00:00:00:0a (Pa:22:00:00:00:0a), Dst: ©a:aa:00:00:00:03 (Pa:2a:00:00:00:03)
3 ! 199 2.840078 > Internet Protocol Version 4, Src: 10.8.0.6 (1€.8.8.6), Dst: 10.8.0.162 (10.0.0.162)
! 200 2.840112 > Transmission Control Protocol, Src Port: mgtt (1883), Dst Port: 1828 (1828), Seq: 6, Ack: 39, Len: 64
3 i 201 2.855e81 > MQ Telemetry Transport Protocol, Publish Message
| 282 2.055887
1! 203 2.855092
} 284 2.855098
]w 285 2.0855104 : o E
| 206 2.055110| “h._. St
} 2087 2.055112 o taee
i 208 2.060112 -P-t--1>
i 209 2.070125 | 9937 oker_loc
i 216 2105000 loass
< ee70 >
> Frame 193: 122 H
> Ethernet II, Srg
> Internet Protocd
> Transmission Cor

v

MQ Telemetry Trg

--- BROKER-TO-BROKER SOCKET --- TIMER
@1- Create brocker to broker socket @1- Create status publish timer
B2- listen to MML status update messages -

Show packet bytes

(o[

4

Figure 3. Capture of Broker Status Message.

ALY

--- BROKER-TO-CLIENTS SOCKET

82- listen to client messages

82- on NML timer event ---
83- nml_data = generate_status_message() -—-
@4- FOR each brokerSocket in brokerSocketMap -
@5- IF brokerSocket is connected ---

06~ send(brokerSocket, nml_data) -
a7- END IF -

@8- END FOR ---

- B83- brocker_id = localhost
- 84- IF nml_map.size() != @ THEN

@1- Create brocker to clinets socket

- 85- brocker_id = get_best_broker(nml_map)

--- 86- END IF

83- IF message == NML status update - —
94- nml_map.update(message) - Rl

85- END

IF

A6- GOTO 82

Since 2008

@iE_S

--- @3- brocker_id = localhost
- 84- IF nml_map.size() != 8 THEN

_— @7- schedue_client_message(brocker_id)

-—- 85- brocker_id = get best broker(nml_map)

--- 86- END IF

- 87- schedue_client_message(brocker_id)

Figure 4. Modified Throttled Algorithm

OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES

00 (0000) 000-000

Netwark_r2r_1
wlan010.0,0.23/28

?

wlan010.0.0.28/28

Eroker!!!g:?{m“ho

10.0.08/34.0/17/28

@

routerl0 100071738

radioMedium

configuratar W
Broker_agr!

visualizer

P_Client400[2]

wlan010.0.0.58/28

; 1an010.0.0.55/28
p_Client200(d{ ™" P_Client300[3]

P_Client100[2] S_Client100 , S Client300
B lexh% 20 ' b ‘"‘" 5
rokthfoc : :

630 Am 5 Client200 Y et }m fed0
é eth1 ethd
Pio 1000 srao)o-w 28

0
-

wian010.0088/28 ian010.0.0.87/28

2

10.0,0.8106.6/
router30
pppo
|0.6:0734/30

S

eth0 =
/30

etho|y 0BT\ Cloud

0.8:045/30

I"/memet
lOO (41/30

® Mos
ppﬁa 42/30
PEN -
ethd eth0 N
B : &
000101730 TO00 102730 &; =i
ppp! pppaiter2 3 51/2!
773730 10.0.0{77/30 100097730 Broker_agr2
ppp0 / 0.00f78/3 wlan010.0, Ob\\‘wﬂ‘ :?
0:0:0,74/30 a 10.0.0.58738 5_Client600
ethl "/H;' \\ b
th 575001 20/28 q eth
othl ey 309 RS0 133728 oE gfmu\ﬂ =
10.0,0-105/30%4% 3/28
etho 003/ 10.0.0410/30 S
0.00/106/30 \ 3 wuu 62/30
4 Broker loc50 APSO P_Clients03 wianot{ i 26728
Broker locd0 wilan010.0.0.119/28 N Broker_loc60 APGO
P AP4D wilan010.0.0.134/2 a0 roker_loc
wlan010.0.0,118/28 i 2W1an0 100013380 1000132728
A‘? P_Client600[2]
< 4 P_Clientsol P_Clients02
S Client00 P_Clients

5_Clients00

A

N

Figure 5 System Model

'

ruc the network
h epresents the fog
care homes healthcare

6. System Model Components

Numerous components were employed in the
in the proposed system, as shown in fig
computing environment of Mosul Ci
system. These components include;
a. loT devices layer compon
Publisher nodes: sihic
sensor data and{have t
Blood Pr

onsist ofiwe main components:

ponsible for generating medical

following static sensors: Blood Sugar,

r erature, Oxygen, and heart rate. The

publishefr symbal can be defined as a single patient or multiple

patients ed by the [numusr] parameter.

iber nodes: which act as the destination for sensor data.

yer which consists of two sublayers:

ocal Fog nodes: responsible for receiving, combining, and

eduling data processing from end devices.

Aggregation Fog Broker: responsible for managing fog nodes,

processing scheduled tasks, and distributing aggregated data

messages from local fog nodes to other local nodes and the

cloud data center.

The cloud layer is responsible for distributing published messages to

aggregate fog brokers if they have a subscription for the data and can

also process scheduled tasks.

C.

QUES

Since 2008

d.

An access point is a versatile access point that supports various
wireless radios. It is provided by the INET framework and offers base
station capabilities through the "leee80211MgmtAp" model.
Configured to operate at 54 Mbps.

The router is an IPv4 router that is capable of supporting Ethernet and
PPP interfaces. It is specifically setup to utilize static routing. The
router is linked to local nodes by an ethernet interface and to faraway
routers through PPP interfaces.

Radio Medium Model: The radio medium model is a component of the
IEEE 802.11 physical layer model. It is necessary to utilize it together
with the leee80211Radio model or any models that are developed from
it. This model offers practical and reasonable preset values for the radio
medium parameters that are utilized in IEEE 802.11 simulations.

Ipv4 Network Configurator: This module is responsible for allocating
IPv4 addresses and configuring static routing for an 1Pv4 network. The
system assigns IP addresses on a per-interface basis, prioritizes subnet
considerations, and optimizes routing tables by consolidating routing
entries.

Network Interface in INET simulations, network interface modules are
the primary means of communication between network nodes.
Network interfaces can be further categorized as wired and wireless;
they conform to the IWiredInterface and IWirelessinterface NED
types, respectively, which are subtypes of INetworklInterface. Wired
network interfaces are compound modules that implement the

OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 00 (0000) 000-000 9

IWiredInterface interface. INET has many wired network interfaces
such as Ethernet and PPP:

e PPP: this module is responsible for encapsulating network
datagrams into PPP frames and decapsulating incoming PPP
frames. It has the option to establish a direct connection with the
network layer or can be set up to retrieve outgoing messages
from an output queue. The module collected data on the
transmitted and discarded packages. Wireless network
interfaces are complex modules that support the
IWirelessinterface interface, such as IEEE 802.11 and IEEE
802.15.4.

7. Task Execution Response Time

The time required for scheduling and executing a task within the fog
network until the response is sent back to the scheduling fog node. This
response time can be calculated according to equation 3.

Response Time = (response arrival time - msg scheduling time) (3)
[29]

8. Results and Discussion

Three scenarios (25, 50, and 100 clients) are applied for QoS 1 of the
MQTT protocol (Which have three levels of Quality of Services QoS0,
QoS1, and QoS2) . The comparisons depend on two factors: the number of
clients (publishers), each of whom has five sensors, and the rese
specification (MIPS). The results are obtained for one broker only and
calculated for the maximum load when the subscriber c@mpletes the
subscription process for all the publishers (clients), belo three
scenarios with their results.

- First Scenario when the number of clients (n) =2
In this scenario, two cases according to the arefpreseiited, the first
one implemented using 3000 MIPS and the sec implemented using

one of these two cases is presented in fo
(Random, Round Robin, and Modj#i
balance sub-case, as seen in tw
includes many statistical Its
minimum (Min), and maxifaum (

, standard deviation (StdDev),
x) of the values).

Table 2. Responsg time of the scheduling algorithms, n = 25 with 3000

MIPS in QoS1.
AlgoritRms Mean StdDev Min Max
No load balance 0.2460377 0.1298361 0.003333 0.562399
Random y 0.1243233 0.0493304 0.023573 0.363461
Round-Ro’bin 0.1156414 0.0397468 0.023575 0.227693
MTH 0.1149815 0.0435132 0.023573 0.446891

Table 3. Response time of the scheduling algorithms, n = 25 with 6000
MIPS in QoS1

StdDev Min Max

Algorithms Mean

No load balance 0.115886 0.061419 0.001666 0.2834
Random 0.085915 0.027781 0.021906 0.1937
Round-Robin 0.080996 0.024197 0.021924 0.1518
MTH 0.082441 0.026611 0.021906 0.2383

The Round-Robin and the Random algorithms are usually used in cloud and
fog computing, while the throttled algorithm is used in cloud computing
(usually obtained accepted results). In this work, a modified throttled
(MTH) algorithm is proposed to be dependent on an active Bfoker status
collection algorithm within the fog computing environment, th tial
algorithm (throttled) is enhanced, improved, and develg
finally, the modified algorithm (MTH) is teste&)e ide
(Round-Robin and Random). The MTH algori

when compared with the Random algorithm,{and is adjacent to the
Round-Robin algorithm results (tables d
-Second Scenario when the nu s (n) =50:

@D

The same as that of the first sc
clients instead of 25, als
the Random algorith
tables (4, and 5), each
results (mean, stan
(Max) of the S).

ps same steps are applied for 50 of
algorithm (MTH) was better than
adjacent to Round-Robin as shown in
ese two tables includes many statistical
deviation (StdDev), minimum (Min), and maximum

se time of the scheduling algorithms, n = 50 with 3000

MIPS in QoS1.
Mean StdDev Min Max
load balance 0.4676908 0.2602113 0.003666 1.081894
Random 0.1736960 0.0784785 0.023568 0.529553
Round-Robin 0.1673693 0.0681790 0.023575 0.373850
MTH 0.1668997 0.0736710 0.023572 0.993809

Table 5. Response time of the scheduling algorithms, n = 50 with 6000

MIPS in QoS1.
Algorithms Mean StdDev Min Max
No load balance 0.2291594 0.1288844 0.001666 0.53376
Random 0.1100991 0.0400511 0.021906 0.27325
Round-Robin 0.10497932 0.03612002 0.0219068 0.22615
MTH 0.10752787 0.0379681 0.021906 0.50719

-Third Scenario when the number of clients (n) = 100:

Again, the same steps that were used in both the first and the second
scenario are applied for this scenario with 100 clients, the modified MTH
algorithm was doing well when tested beside the other algorithms (better
than the Random algorithm, and very adjacent to the Round-Robin
algorithm). Tables 6, 7 then figures 6, and 7 include the obtained results in
this scenario.

Table 6. Response time of the scheduling algorithms, n = 100 with 3000
MIPS in QoS1

Algorithms Mean StdDev Min Max

10 OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 00 (0000) 000-000

No load balance 10.133673 ~ 5.8587900 0.0001776 24.907923

Random 0.2853683 0.1416781 0.0008949 0.8218739
Round-Robin 0.2757815 0.1278717 0.0001091 0.6173702
MTH 0.2739725 0.1294588 0.0002059 1.3480387

Table 7. Response time of the scheduling algorithms, n = 100 with 6000

MIPS in QoS1
Algorithms Mean StdDev Min Max
No load balance 0.452677 0.255464 0.001666 0.99328
Random 0.158580 0.066647 4.79E-05 0.41677
Round-Robin 0.154271 0.059658 6.8E-06 0.33125
MTH 0.155760 0.066747 5.59E-05 0.92558

0.3

Response Time(sec)

=50 n=100

B Rundom B Round-Robin MTH

Figure 6. Response Time with 3000 MIPS

Y.

0.2
% 015
F
E o1
=
a
S 005 I
Qo
3
z 0

n=25 n=50 n=100

H Rundom ™ Round-Robin MTH

Figure 7. Response Time with 6000 MIPS
9. Conclusions

In this work, the evaluation and use of various load-balancing algorithms
lead to a smooth distribution of computational tasks across the network.
The appropriate load balancing algorithm will improve the effectiveness of
the fog system due to better resource utilization; this effect was clear when
the response time was reduced by using load balancing algorithms

0.25
0.2
0.15
0.1
The autfiorSidecl
0.05
0 ing%¥Burce
n=25 n is

(Random, Round-Robin, and Modified Throttled) compared to the response
time without the load balancing mechanism. Adding extra management
layers to the traditional Throttled algorithm, made it more suitable to be
employed in fog computing as the other dependent algorithms (Round-
Robin, Random), according to the given response time results of the
scheduling algorithm. The integration of cloud computing and fog
computing adds new flexibility to network resources and traffic
management. Some of the suggested future works and open,problems are
outlined below:

e Green fog computing to expand the breadth of the a lude
the study of power and energy consumption al find ways
to optimize and reduce the overall consumpjion f0 and reduce
harmful impacts on the surrounding envi

. Develop advanced dynamic resource, ms to aid in
the exploration and evaluatio trategies for optimal

puting environment.
e Extending the manageme implementation to consider

the response time delay

Authors’ contribugion
to the preparation of this article.

Declaratio
0 conflicts of interest.

didn’t receive any specific funds.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments

The authors express their gratitude to the University of Mosul, College of
Engineering, Computer Engineering Department, for their priceless help in
enhancing the efficacy of this research.

REFERENCES

[1] A. M. and M. G. Rabeea Basir, Saad Qaisar, Mudassar Ali, Monther
Aldwairi, Muhammad Ikram Ashraf, “Fog Computing Enabling Industrial
Internet of Things: State-of-the-Art and Research Challenges,” Sensors,
Vol. 19, No. 21, p. 4807, Nov. 2019. https://doi.org/10.3390/519214807

[2] V.N.H. Sabireen, “A Review on Fog Computing: Architecture, Fog with
ToT, Algorithms and Research Challenges,” ICT Express, Vol. 7, No. 2,
pp. 162-176, Jun. 2021. https://doi.org/10.1016/j.icte.2021.05.004

[31 A. Varfolomeev and L. Al-Farhani, “Blockchain Fog-based scheme for
identity authentication in smart building,” Al-Qadisiyah J. Eng. Sci., Vol.
16, No. 3, pp. 218-227, Oct. 2023,
https://doi.org/10.30772/qjes.1999.180617

[4] R. Neware and U. Shrawankar, “Fog Computing Architecture,
Applications and Security Issues,” Int. J. Fog Comput., Vol. 3, No. 1, pp.
75-105, Jan. 2020. https://doi.org/10.4018/1JFC.2020010105

[5] M. Rahimi, M. Songhorabadi, and M. H. Kashani, “Fog-Based Smart
Homes: A Systematic Review,” J. Netw. Comput. Appl., Vol. 153, No. C,
p. 102531, Mar.2020. https://doi.org/10.1016/j.jnca.2020.102531

https://www.mdpi.com/1424-8220/19/21/4807
https://doi.org/10.1016/j.icte.2021.05.004
https://doi.org/10.4018/IJFC.2020010105
https://doi.org/10.1016/j.jnca.2020.102531

OMAR NAFEA AND TURKAN KHALEEL /AL-QADISIYAH JOURNAL FOR ENGINEERING SCIENCES 00 (0000) 000-000 11

[6]

(7]

(8]

[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

O. Alani, T. Khaleel, and O. Al-Abdulgader, “A Review on Fog
Computing: Research Challenges and Future Directions,” Al-Rafidain
Eng. J, Vol. 28 No. 1, pp. 341-350, Mar. 2023.
https://doi.org/10.33899/rengj.2022.136642.1211

P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on Fog Computing:
Architecture, Key Technologies, Applications, and Open Issues,” J. Netw.
Comput. Appl., Vol. 98, No. C, pp. 27-42, Nov. 2017.
https://doi.org/10.1016/j.jnca.2017.09.002.

R. K. Naha, S. Garg, and A. Chan, “Fog Computing Architecture: Survey
and Challenges,” in Big Data-Enabled Internet of Things, Institution of
Engineering and Technology, 2019, pp. 199-223.
https://doi.org/10.48550/arXiv.1811.09047

B. Negash, A. M. Rahmani, P. Liljeberg, and A. Jantsch, “Fog Computing
Fundamentals in the Internet-of-Things,” in Fog Computing in the Internet
of Things, Cham: Springer International Publishing, 2018, pp. 3-13.
https://doi.org/10.1007/978-3-319-57639-8_1

A. M. Rahmani et al., “Exploiting Smart e-Health Gateways at The Edge
of Healthcare Internet-of-Things: A Fog Computing Approach,” Futur.
Gener. Comput. Syst, Vol. 78, pp. 641-658, Jan. 2018.
https://doi.org/10.1016/j.future.2017.02.014

P. Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, “Fog Computing Based
Face Identification and Resolution Scheme in Internet of Things,” IEEE
Trans. Ind. Informatics, Vol. 13, No. 4, pp. 1910-1920, Aug. 2017.
https://doi.org/10.1109/T11.2016.2607178

Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung, “A
survey on the ietf protocol suite for the internet of things: standards,
challenges, and opportunities,” IEEE Wirel. Commun., Vol. 20, No. 6, pp.
91-98, Dec. 2013. https://doi.org/10.1109/MWC.2013.6704479

C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog
Computing for the Internet of Things: A Survey,” ACM Trans. Internet
Technol.,, Vol. 19, No. 2, pp. 1-41, May 2019.
https://doi.org/10.1145/3301443

N. Mohan and J. Kangasharju, “Edge-Fog Cloud: A Distributed ClI
Internet of Things Computations,” in International Conference o
Cloudification of the Internet of Things, IEEE, 2016, pp. 1-6.
https://doi.org/10.1109/CI10T.2016.7872914.
A. Brogi and S. Forti, “QoS-Aware Deployment of 10T,
Through the Fog,” IEEE Internet Things J., Vol. 4, No. 5, p
Oct. 2017. https://doi.org/10.1109/J10T.2017.27014;
H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and

ya,kiFogSim: A

Toolkit for Modeling and Simulation R anagement
Techniques in Internet of Things, E nd, Fog Computing
Environments,” Softw. Pract. Exp., Vo, No. . 1275-1296, Sep.

2017. https://doi.org/10.1002/spe.2508
T. Qayyum, A. W. Malik, M. A. f
“FogNetSim++: A Toolkit fc
Fog Environment,” IEEE
https://doi.org/10.1109

A. Varga, “OMNeT+4” in M
Berlin, Heidel

eling and Tools for Network Simulation,
Berlin Heidelberg, 2010, pp. 35-59.

d C. Juiz, “YAFS: A Simulator for ToT Scenarios
IEEE Access, Vol. 7, pp. 91745-91758, 2019.

. Qayyum, A. U. Rahman, M. A. Khan, O. Khalid, and S.
“xFogSim: A Distributed Fog Resource Management
ework for Sustainable IoT Services,” IEEE Trans. Sustain. Comput.,
Vol. 6, No. 4, pp. 691-702, Oct 2021.
https://doi.org/10.1109/TSUSC.2020.3025021

S. Majumder, E. Aghayi, M. Noferesti, Z. Pang, and M. Deen, “Smart
Homes for Elderly Healthcare—Recent Advances and Research
Challenges,” Sensors, Vol. 17, No. 11, p. 2496, Oct. 2017.
https://doi.org/10.3390/517112496

O. Debauche, S. Mahmoudi, P. Manneback, and A. Assila, “Fog IoT for
Health: A new Architecture for Patients and Elderly Monitoring.,”
Procedia Comput. Sci., Vol. 160, pp. 289-297, 2019.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

https://doi.org/10.1016/j.procs.2019.11.087

P. Singh, R. Kaur, J. Rashid, and S. Juneja, “A Fog-Cluster Based Load-
Balancing Technique,” Sustainability, Vol. 14, No. 13, p. 7961, Jun. 2022.
https://doi.org/10.3390/su14137961

R. Beraldi, C. Canali, R. Lancellotti, and G. Proietti Mattia, “Randomized
Load Balancing under Loosely Correlated State Information in Fog
Computing,” in Proceedings of the 23rd International ACM Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
Nov. 2020, pp. 123-127. https://doi.org/10.1145/3416010.3423244

V. Kashyap and A. Kumar, “Load Balancing Technigues for Fog
Computing Environment: Comparison, Taxonomy, Ope
Challenges,” Concurr. Comput. Pract. Exp., Vol. 34,
Oct. 2022. https://doi.org/10.1002/cpe.7183

N. R. O. Al-Rubaie, R. N. N. Kamel, and Rd M. A
Fog Computing in OMNeT++,” Bull. Electr.
No. 2, pp. 979-986, Apr. 2022. https://doi.
D. B. Abdullah and H. H. Mohammed,
Traffic Management Framework ft
International Conference on
(ICOASE), Sep.
https://doi.org/10.1109/1C!
A. S. Kadhim and M.
Distributed Fog Co

og uting Systems,” in 4th
dvance lence and Engineering
02 pp. 60-65.
22.10075605
ybrid Load-Balancing Algorithm for
ernet of Things Environment,” Bull.
. 11, No. 6, pp. 3462-3470, Dec. 2022.
v11i6.4127
INET

4.5.0 documentation.”

https://doi.org/10.33899/rengj.2022.136642.1211
https://doi.org/10.1016/j.jnca.2017.09.002
https://doi.org/10.48550/arXiv.1811.09047
https://doi.org/10.1007/978-3-319-57639-8_1
https://doi.org/10.1016/j.future.2017.02.014
https://doi.org/10.1109/TII.2016.2607178
https://doi.org/10.1109/MWC.2013.6704479
https://doi.org/10.1145/3301443
https://doi.org/10.1109/CIOT.2016.7872914
https://doi.org/10.1109/JIOT.2017.2701408
https://doi.org/10.1002/spe.2509
https://doi.org/10.1109/ACCESS.2018.2877696
https://doi.org/10.1007/978-3-642-12331-3_3
https://doi.org/10.1109/ACCESS.2019.2927895
https://doi.org/10.1109/TSUSC.2020.3025021
https://doi.org/10.3390/s17112496
https://doi.org/10.1016/j.procs.2019.11.087
https://doi.org/10.3390/su14137961
https://doi.org/10.1145/3416010.3423244
https://doi.org/10.1002/cpe.7183
https://doi.org/10.11591/eei.v12i2.4201
https://doi.org/10.1109/ICOASE56293.2022.10075605
https://doi.org/10.11591/eei.v11i6.4127
https://inet.omnetpp.org/docs/showcases/measurement

