Abstract
Copper removal from a simulated wastewater was investigated by using rotating tubular packed bed of woven screens electrode as a cathode in a new design of electrochemical reactor. Effects of electrolysis operating parameters like current (0.5–2.5 A), rotation speed (150–750 rpm), and initial copper concentration (100–500ppm) were investigated. Optimization of process parameters was carried out by adopting response surface methodology (RSM) combined with Box–Behnken Design (BBD) where copper removal efficiency was selected as a response function. The results indicated that current has the main effect on the copper removal efficiency followed by rotation speed and concentration. The results of regression analysis revealed that the experimental data could be fitted to a second-order polynomial model with a value of determination coefficient (R2) equal to 0.9894 and Fisher test at value of 51.57 for. The optimum conditions of the process parameters based on RSM method were an initial copper concentration of 205 ppm, current of 2.5A, and rotation speed of 750 rpm utilizing cathode composed of screens with mesh no. 30 where a final copper concentration less than 2 ppm was obtained after 30 min.